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Abstract

We study the consequences of markups for long-run economic growth in a model
of firm-driven endogenous technological change. In this framework, differentiated
firms engage in monopolistic competition, charge heterogeneous markups, and make
forward-looking investments in R&D to improve their process efficiency. Markups
distort the scale at which these firms operate and, therefore, affect their incentives
to invest in R&D. With dispersion in markups, both the aggregate and cross-firm
allocations of such investments are distorted. Using firm-level administrative data
from France to discipline our model, we find that correcting the product market
distortions induced by markups increases the long-run growth rate of productivity
by 1.2 percentage points per year. Nearly 75% of this faster productivity growth
can be achieved by simply reallocating R&D resources across firms, revealing that
the dispersion in markups, rather than their average level, is more detrimental to
economic growth.
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1 Introduction

The widespread rise in market concentration in recent decades has raised concerns about
the aggregate consequences of product market power.1 Concurrently, a series of studies
have concluded that the macroeconomic costs of markups can be substantial, providing
grounds for these concerns.2 These costs ensue from markups distorting the scale at
which firms operate. But how does this distortion affect their incentives to bring better
or cheaper products to the market?

This paper quantifies the impact on economic growth of rectifying the product market
distortions induced by markups. The assumption that forms the basis of our analysis is
that economic growth is sustained by the research and development (R&D) investments
of imperfectly competitive firms. While markups are required to recoup the fixed cost of
an investment in R&D, they also distort the scale at which firms produce, affecting their
incentives to invest in R&D through partial and general equilibrium channels.

In partial equilibrium, imperfectly competitive firms curtail their own production.
However, since the idea behind a technological improvement is nonrival, the return on
an investment in R&D increases with the scale at which a firm operates. Therefore, by
restricting their output, firms limit the scale at which their improved technology can
be deployed, lowering the return on their investment in R&D. Moreover, if these firms
differ in the markups they command and differentially hold back their production, both
the aggregate and cross-firm allocations of such investments are distorted.

However, in general equilibrium, the consequences of markups for economic growth
are a priori ambiguous. Indeed, if firms limit the scale at which they produce, aggregate
demand for factors of production will be lower. In environments where those factors
(e.g. labor) are shared between the purposes of production and R&D, the low demand
for production might increase the availability of resources for R&D and, in turn, speed
up the pace of economic growth. To quantitatively resolve this ambiguity, we put forth
a general equilibrium model of firm-driven endogenous technological change.

In the model we propose, differentiated firms engage in monopolistic competition
and face non-isoelastic demand curves from a final sector that uses their varieties as
inputs to produce a final good. These demand curves satisfy Marshall (1890)’s second
law of demand, which states that lower prices are met with less elastic demand. This
property of demand implies that, in equilibrium, more productive firms are larger and

1See Grullon, Larkin and Michaely (2019), Autor, Dorn, Katz, Patterson and Van Reenen (2020),
De Loecker, Eeckhout and Unger (2020), and Kehrig and Vincent (2021).

2See Baqaee and Farhi (2019), Bilbiie, Ghironi and Melitz (2019), Behrens, Mion, Murata and Suedekum
(2020), Edmond, Midrigan and Xu (2023) and Afrouzi, Drenik and Kim (2023).
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command higher markups–a fact supported by cumulating empirical evidence.3

Over time, firms improve their process efficiency by hiring labor to engage in R&D4

However, this decision is risky since firms receive independent Brownian productivity
shocks in each period. As these firms become more productive and lower their price to
attract more demand, they are met with a progressively less elastic demand schedule,
enabling them to charge higher markups. This pursuit of profit opportunities through
R&D investment stands as one of the two engines of economic growth.

The second one unfolds through the selective replacement of unsuccessful firms by
more productive newcomers, sustained by the endogenous process of entry and exit.
New entrants incur a labor-denominated entry cost to imperfectly imitate the existing
technology of a randomly selected incumbent. Meanwhile, incumbent firms must bear
a fixed overhead labor cost per unit of time to remain in business, and failure to do so
results in endogenous exit. To meet these costs, and demand from production and R&D,
labor is elastically supplied by a representative household.

Through a generalized method of moments (GMM) strategy, we estimate the model’s
structural parameters from a comprehensive administrative panel dataset of French
firms from 2009 to 2019. A central challenge of this exercise is to discipline the degree
of markup dispersion in the model and its two sources of productivity growth. In our
counterfactual analysis, the extent of R&D reallocation is contingent upon the former,
and its consequences for economic growth depend on the latter. Since our model’s sole
source of markup dispersion derives from size differences across firms, we replicate the
empirical relationship between firm-level markups and market shares and the extent of
firm size heterogeneity in the data. We further take advantage of the panel structure of
this dataset to replicate firm-level and aggregate growth moments.

With the quantified model at hand, we conduct several counterfactual exercises. We
first quantify the impact on economic growth of correcting product market distortions
from markups. In our model, this can be achieved through size-dependent production
subsidies to firms, inducing each to price at marginal cost.5,6 This intervention increases
the growth rate of total-factor productivity (TFP) by 1.2 percentage points per year in
the long run, which is attributable to three factors: (1) an increase in aggregate R&D, (2)
a reallocation of R&D across firms, and (3) a higher rate of entry and exit.

3See De Loecker and Warzynski (2012), Amiti, Itskhoki and Konings (2014), De Loecker, Goldberg,
Khandelwal and Pavcnik (2016), Amiti, Itskhoki and Konings (2019), De Loecker et al. (2020), Autor et al.
(2020) and De Ridder, Grassi and Morzenti (2023).

4In Appendix A.3, we show that this theoretical framework is isomorphic to one in which firms
improve the quality of their product when quality and quantity are perfect substitutes.

5This could alternatively be achieved by enabling firms to engage in perfect price discrimination.
6This intervention alone does not decentralize the optimal allocation of resources, which is derived

and presented in Appendix A.1.8.
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As the intervention takes hold, firms scale up, further invest in R&D, and achieve
faster productivity growth. This dynamic is most pronounced for the largest firms, which
initially commanded the highest markups and thus restricted their output to the greatest
extent. Correcting product market distortions induces these firms to disproportionately
expand their production, yielding a differentially higher return on their investments in
R&D. Consequently, their more frequent improvements in process efficiency are rolled
out over a larger volume of output, further contributing to productivity growth.

In contrast, the smallest, least productive firms face intensified competitive pressures
and are thus edged out of the market at a higher rate. As R&D employment is reallocated
towards their larger competitors, these small firms trail behind and exit at a higher rate,
unable to cover the overhead cost, which grows faster due to more rapid wage growth.
Since more productive new entrants replace these unsuccessful firms, the productivity
pool undergoes more frequent improvements, thereby accelerating TFP growth.

We conduct alternative exercises to gain insight into the catalysts behind this growth
acceleration. To assess the role of a greater aggregate allocation of labor to R&D relative
to its reallocation across firms, we consider a “constrained” intervention in which we
hold the former fixed. Here, firm-level production subsidies are upheld, but a uniform
tax is concomitantly levied on their R&D expenditures to leave the aggregate allocation
of labor to R&D at a level commensurate with the initial equilibrium. This intervention
achieves an increase in productivity growth of almost 75% of the increment recorded
under its “unconstrained” counterpart, revealing a prominent role for the reallocation,
rather than expansion, of R&D employment.

Finally, we explore more flexible tax and subsidy schemes to disentangle the role of
the aggregate markup from that of markup dispersion. A uniform subsidy that rectifies
the level of markups while leaving their dispersion unchanged, reduces the long-run
growth rate of TFP by a muted 4 basis points. On one hand, as firms expand in scale and
distribute their R&D expenditures over more units sold, the return on those investments
increases. On the other, these firms demand more production labor and inadvertently
bid up the cost of R&D through a higher wage. These offsetting channels indicate that
while the level of markups significantly restricts the scale of the economy (Edmond et
al., 2023), it has nearly no bearing on the rate at which it grows.

Conversely, a size-dependent tax and subsidy scheme that addresses the dispersion in
markups while holding their average level fixed increases long-run productivity growth
by 1.3 percentage points, a slight uptick from the baseline subsidy scheme. Notably,
this scheme is nearly budget-neutral, even raising revenue equivalent to 0.6% of output,
which is rebated to the household. The ensuing reallocation of R&D employment from
small, unproductive firms towards their larger, further expanding competitors ensures
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that (1) process efficiency improvements are rolled out over more units sold, and (2)
more productive new entrants more frequently replace inefficient exiting firms.

These counterfactual exercises indicate that rectifying product market distortions
induced by markups has a substantial positive effect on economic growth. This is mostly
due to a reallocation of R&D employment from small to large firms. Our findings suggest
that the welfare consequences of markups may surpass our previous approximations,
providing further grounds for concern about recent trends in market concentration.

The rest of the paper is outlined as follows. In the remainder of this section, we
discuss the relevant literature. Section 2 provides partial equilibrium intuition on the
dynamic consequences of markups. Section 3 presents our general equilibrium model.
Section 4 describes the quantification of this model. Section 5 presents the results of our
counterfactual analysis and Section 6 concludes.

Related Literature

Our paper is primarily related to a longstanding literature on the macroeconomic costs
of product market power. Classic analyses can be traced back to Smith (1776), Lerner
(1934), Harberger (1954) and Dixit and Stiglitz (1977). Quantitatively, Baqaee and Farhi
(2019), Bilbiie et al. (2019), Behrens et al. (2020), Edmond et al. (2023) and Afrouzi et
al. (2023) are recent examples of papers concluding that the aggregate efficiency losses
from markups can be large. The mechanisms stressed in this literature revolve around
markups restricting the economy’s scale of production, distorting the allocation of factors
of production across firms, and inducing inefficient entry (Dhingra and Morrow, 2019).

Yet, by distorting the scale at which firms operate, the markups they command alter
their incentives to invest in R&D. This is akin to a firm-specific “market size” effect. The
notion that incentives for R&D are dictated by the extent of the market is extensively
discussed in Schmookler (1966) and succinctly captured by a quote from Matthew
Boulton, a mechanical engineer, and business partner of James Watt:

“It would not be worth my while to make [steam engines] for three countries
only; but I find it very well worth my while to make [them] for all the world.”
– Matthew Boulton (Scherer, 1965)

This phenomenon is explored in the analyses of Arrow (1962) and Dasgupta and Stiglitz
(1980), and appears in the lab equipment model of Rivera-Batiz and Romer (1991).7

Our contribution is to quantify its consequences for economic growth in a framework

7Unlike the canonical Romer (1990) model, the lab equipment model features no technology spillovers.
Nevertheless, economic growth is inefficiently low in the decentralized equilibrium as private incentives
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that features heterogeneity in markups. This is motivated by the mounting evidence of
substantial markup dispersion across firms (De Loecker and Warzynski, 2012; Amiti et
al., 2014; De Loecker et al., 2016; Amiti et al., 2019; De Loecker et al., 2020; De Ridder et
al., 2023). To tractably yet endogenously replicate such dispersion, our model features a
non-isoelastic demand system à la Kimball (1995), with the functional form proposed by
Klenow and Willis (2016).

Under such a demand system, markup dispersion derives from price differences
across firms, which, in our model, reflect heterogeneity in their process efficiency. To
endogenously deliver such heterogeneity, our model borrows from the firm dynamics
literature and extends the frameworks of Hopenhayn (1992) and Luttmer (2007) to allow
for forward-looking and risky investments in R&D.8 Following Ericson and Pakes (1995),
Benhabib, Perla and Tonetti (2021) and Lashkari (2023), the firm’s investment choice is
formulated as a stochastic optimal control problem, and its endogenous exit decision
takes the form of an optimal stopping time problem.

The counterfactual analysis we conduct in this model differs from those considered in
Peters (2020), Cavenaile, Celik and Tian (2021) and Voronina (2021), which are otherwise
closely related to our paper. The former two propose models of growth through creative
destruction in which heterogeneous markups arise endogenously as the outcome of
firms’ investments in R&D. Peters (2020) quantifies the aggregate static efficiency losses
from markups whereas our focus is on their consequences for long-run economic growth.
Cavenaile et al. (2021) study an economy whose structural parameters change over time
to replicate the observed trend in markups and quantify the extent to which the resulting
static efficiency costs are mitigated or amplified by the endogenous response of firms’
investments in R&D.

Our counterfactual analysis is closest to Voronina (2021), who puts forth a theory of
firm-driven endogenous growth in which markups are heterogeneous but exogenous.
Through the lens of this model, she quantifies the improvement in welfare that a social
planner can achieve by choosing flexible transfers to firms. However, the planner can
design these flexible transfers to fix other market failures (e.g., technology spillovers)
such that this counterfactual exercise does not isolate the costs of markups. In contrast,
the subsidy schedule we consider is constrained to a structure that induces all firms to
price at marginal cost, thus directly addressing the product market distortions induced
by markups.

to create new intermediate varieties are weakened by final good producers who substitute marked-up
intermediates for labor.

8This is in line with the findings of Foster, Haltiwanger and Krizan (2001) and Garcia-Macia, Hsieh and
Klenow (2019) who infer large contributions to productivity growth from entry and exit, and technology
improvements carried by incumbent firms on their existing products.
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The cross-firm reallocation of R&D employment instigated by the intervention we
consider relates our paper to a growing literature on the misallocation R&D resources,
including Akcigit, Celik and Greenwood (2016), Acemoglu, Akcigit, Alp, Bloom and
Kerr (2018), Akcigit, Hanley and Serrano-Velarde (2020), Liu and Ma (2021), Hopenhayn
and Squintani (2021), Chen, Liu, Suárez Serrato and Xu (2021), Akcigit, Hanley and
Stantcheva (2022), König, Storesletten, Song and Zilibotti (2022), De Ridder (2023),
Ayerst (2023) and Lehr (2023). We contribute to this literature by quantifying a novel
mechanism that can give rise to such misallocation, which results from the dispersion of
markups across firms within an industry.

Acemoglu (2023) and Aghion, Bergeaud, Boppart, Klenow and Li (2023) are closely
related to our study, as they investigate the consequences of markups on the allocation
of R&D resources. Acemoglu (2023) studies their allocation across sectors (rather than
firms) in a setting with heterogeneous (yet exogenous) markups. Aghion et al. (2023)
distinguish between “good” and “bad” markups. The former reflects a firm’s quality
advantage over its competitors, which confers positive technology spillovers onto other
firms, while the latter reflects its higher process efficiency, with no associated spillovers.
Hence, they find that the allocation of R&D resources is inefficiently distorted away
from high markup firms in the former but not the latter case.

2 Partial Equilibrium Intuition

We consider a simple two-period partial equilibrium model to form intuition on how
markups alter private incentives for productivity-enhancing investments. In this setting,
either a profit-maximizing monopolist or a welfare-maximizing agent operates a firm
and allocates resources to achieve an endogenously chosen reduction in its marginal
cost (Arrow, 1962; Dasgupta and Stiglitz, 1980; Tirole, 1988; Garella, 2012).

The setup is as follows. In both periods, a household inelastically supplies a factor
whose price is exogenous and normalized to unity. This household has preferences
over the consumption of a commodity whose price is denoted by p. Assume that these
preferences imply a twice differentiable demand function y(p) that satisfies:

∂y(p)
∂p

< 0, ϑ(p) ≡ −∂ ln(y(p))
∂ ln(p)

> 1 and ε(p) ≡ ∂ ln(ϑ(p))
∂ ln(p)

∈ R

where ϑ(p) denotes the price elasticity of demand at price p, and ε(p) denotes the “super-
elasticity” of demand at that price. In the post-period, the commodity is produced by a
firm using the factor supplied by the household according to a technology with constant
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returns to scale described by the marginal cost function:

c(z′) = exp(−z′).

Here, z′ denotes the firm’s productivity in the post-period, which can be controlled by
the agent operating the firm in the pre-period. More specifically, i(g) units of the factor
can be invested in the pre-period to achieve a g% improvement in the firm’s post-period
process efficiency:

z′ = g + z

where z denotes the firm’s pre-period process efficiency. The twice differentiable function
i is assumed to be strictly increasing and strictly convex and satisfies i(0) = 0 and
limg→∞ i(g) = ∞.

In this environment, we now compare the decision problems of a profit-maximizing
monopolist and a welfare-maximizing agent operating the firm. In the post-period, both
agents face a static problem. Given the household’s demand function, they must choose
a unit price at which to sell the commodity to maximize profits (producer surplus) or
social surplus (the sum of producer and consumer surplus). The two objectives are
respectively denoted by π(z′, p) and S(z′, p):9

π(z′, p) ≡ [p − exp(−z′)]y(p) and S(z′, p) ≡ π(z′, p) +
∫ p

p
y(p′)dp′.

Assuming demand is positive at optimally chosen prices, it is straightforward to show
that maximized producer and social surpluses are given by:

π(z′) ≡ p(z′)y(p(z′))
ϑ(p(z′))

and S(z′) ≡
∫ p

c(z′)
y(p)dp

where p(z′) denotes the usual profit-maximizing price implicitly defined as:

p(z′) ≡ ϑ(p(z′))
ϑ(p(z′))− 1

× c(z′).

Let us now consider the agents’ dynamic problem. In the pre-period, they must choose
a factor allocation to investments in R&D to maximize post-period producer or social
surplus. Up to a first-order approximation of these objectives and assuming no time

9Here, p denotes the choke price.
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discounting, these dynamic problems are described by:

max
g

{π(z) + π′(z)g − i(g)} and max
g

{S(z) + S′(z)g − i(g)}

where π′(z) and S′(z) denote the partial derivatives of producer and social surplus with
respect to the firm’s initial productivity. The first-order conditions of each problem are:

π′(z) = i′(g) and S′(z) = i′(g).

Therefore, private and social incentives for marginal cost reductions may not coincide if
marginal producer and social surpluses differ. The proposition that follows characterizes
the ratio R(z) ≡ π′(z)/S′(z) of these objects.

Proposition 1. The ratio R(z) of marginal producer to social surplus from an infinitesimal
reduction in marginal cost is characterized by:

R(z) ≡ π′(z)
S′(z)

=
y(p(z))

y(exp(−z))
< 1.

When the welfare-maximizing agent is instead constrained to produce at the same scale as the
monopolist, the ratio Rc(z) of marginal producer surplus to “constrained” marginal social
surplus is characterized by:

Rc(z) ≡ π′(z)
π′(z) + C′(z)

=
ϑ(p(z)) + ε(p(z))− 1

2ϑ(p(z)) + ε(p(z))− 1
< 1

where C(z) ≡
∫ p

p(z) y(p)dp denotes consumer surplus.

Proposition 1 shows that in this setting, the welfare-maximizing agent always faces
stronger incentives to achieve a marginal cost reduction than the monopolist, even
when the two are constrained to operate at the same scale. The intuition behind this
proposition is twofold. First, since the welfare-maximizing agent optimally operates
at a larger scale than the monopolist, the same reduction in marginal cost applies to
more units produced, thus begetting larger total cost savings. This is evident from the
expression of the ratio R(z), which is equal to the ratio of the quantities produced by the
monopolist and the welfare-maximizing agent.

Second, at a given scale of operation, the welfare-maximizing agent internalizes that
a reduction in marginal cost may achieve additional consumer surplus, whereas the
monopolist does not. Intuitively, since the monopolist does not price discriminate (by
assumption), it faces a trade-off as it becomes more productive. It can lower its price to
sell additional units, but doing so comes at the cost of reaping lower producer surplus
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per unit sold. In contrast, the split between consumer and producer surplus is irrelevant
to the welfare-maximizing agent. This agent internalizes that an increase in consumer
surplus exactly balances any loss in producer surplus from a price reduction. This is
illustrated in the second part of the proposition, where it is clear that the monopolist
only “appropriates” a fraction of the marginal surplus achieved by the marginal cost
reduction. We now take this first proposition further to characterize how the distance
between private and social incentives for R&D depends on the firm’s initial productivity.

Proposition 2. The elasticity of the ratio R(z) with respect to the firm’s initial productivity is
characterized by:

∂ ln(R(z))
∂z

= ϑ(p(z))ϱ(z)− ϑ(exp(−z)) where ϱ(z) ≡ −∂ ln(p(z))
∂z

.

Here, ϱ(z) denotes the monopolist’s productivity “pass-through” (i.e., the percent change in the
monopolist’s price following a one percent improvement in its productivity), which is a function
of the price elasticity and super-elasticity of demand:

ϱ(z) =
ϑ(p(z))− 1

ϑ(p(z)) + ε(p(z))− 1
.

Proposition 2 shows that the distance between private and social incentives depends
on the price elasticity and super-elasticity of demand. To illustrate this, Figure 1 plots
the ratio R(z) implied by four common demand functions: the isoelastic (CES) demand
function, the linear demand function, the Klenow and Willis (2016) specification of
the Kimball (1995) demand function and the Translog demand function proposed by
Feenstra (2003). Under the CES demand function, social incentives for marginal cost
reductions exceed private incentives by the same proportion, regardless of the firm’s
productivity. In contrast, for the non-isoelastic Kimball and Translog demand functions,
the distance between social and private incentives increases with firm productivity.
However, this property does not generically hold for all non-isoelastic demand functions,
as the linear demand function features a constant ratio R(z) = 1/2.

Since this section presented a stylized partial equilibrium environment, we have
abstracted from the possibility that the private and social costs of investments in R&D
may not coincide. This motivates the following section, which presents a more involved
theory where market prices may fail to reflect the social value of resources. As discussed
in Section 1, this possibility must be crucially accounted for when quantifying the
consequences of markups for economic growth in general equilibrium.
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Figure 1: Private vs. Social Incentives for Productivity Improvements

Note: The vertical axis measures the ratio R(z) of marginal producer to social surplus
from an infinitesimal reduction in marginal cost.

3 Theory

In this section, we propose a general equilibrium theory of endogenous economic growth
that builds on the partial equilibrium intuition presented in the previous section. We
extend the model of Luttmer (2007) to allow for endogenous productivity improvements
by incumbent firms who face non-isoelastic demand curves.

3.1 Economic Environment

Preferences

Consider an economy populated by an infinitely-lived representative household of unit
measure with separable preferences over consumption Ct and hours worked Ht such
that lifetime utility is defined as:

U0 =
∫ ∞

0
e−ρt[ln(Ct)− v(Ht)]dt. (1)
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Here, ρ > 0 is the household’s rate of time preference, the function v is strictly increasing
and convex, and time is continuous and indexed by t ∈ R+

0 .

Technology

The economy is composed of two sectors: the final and intermediate sectors. The final
sector produces a final good using a continuum of differentiated varieties indexed by
j from the intermediate sector. The final sector’s production technology has constant
returns to scale and is defined implicitly by the following Kimball (1995) aggregator:∫

j∈Jt
Υ(ŷjt)dj = 1 where ŷjt ≡

yjt

Yt
. (2)

Here, Yt denotes aggregate output and yjt is the quantity of variety j used in production.
The function Υ is strictly increasing, strictly concave, and satisfies Υ(1) = 1. In what
will follow, we denote the measure of varieties at time t by Mt ≡ |Jt|. This production
function belongs to the family of homothetic aggregators with direct implicit additivity
(HDIA) as defined in Matsuyama and Ushchev (2017). In particular, it nests the Dixit and
Stiglitz (1977) aggregator when Υ(ŷ) = ŷ

θ−1
θ , where θ > 1 would denote the constant

elasticity of substitution across varieties.

Each variety is produced by a single firm from the intermediate sector using physical
capital and production labor with Hicks-neutral productivity zjt according to a Cobb-
Douglas production technology:

yjt = exp(zjt)kα
jtl

1−α
jt . (3)

Here, k jt and ljt respectively denote the quantities of capital and labor used in production,
and α ∈ [0, 1] denotes the output elasticity of capital. As in Hopenhayn (1992) and
Luttmer (2007), firms must pay an overhead of cO > 0 units of labor per unit of time to
remain active. If this cost is unpaid, a firm must irreversibly exit. Firms may also exit
exogenously at Poisson rate χ > 0.

At any point in time, a firm is fully described by its productivity zt ∈ R such that,
from this point on, we abandon the j-index notation. Over time, firms can improve
their process efficiency by allocating labor to R&D. More precisely, productivity evolves
according to a controlled diffusion process of the form:

dzt = γtdt + σdBt

where γt > 0 is the controlled drift, dBt is the standard normal increment of a Brownian
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motion and σ > 0 is its standard deviation.10 Defining a firm’s productivity relative to
the least productive firm in the economy as ẑt ≡ zt − zt, we obtain the following law of
motion by Itô’s lemma:

dẑt = (γt − gt)dt + σdBt. (4)

Here, zt and gt respectively denote the productivity lower bound and its instantaneous
rate of change. The labor requirement to achieve a drift of γ for a firm with relative
productivity ẑ is i(γ, ẑ) : R+

0 × R+
0 → R+

0 , where the function i is strictly increasing and
convex in its first argument and satisfies i(0, ẑ) = 0 and γ(ẑ) < ∞ for all ẑ ∈ [0, ∞).

In every period, a measure of potential entrants can allocate cE > 0 units of labor to
achieve a unit flow of entry and start producing with a relative productivity draw from
the cumulative density function (CDF) FE

t (ẑ). This function is a transformation of the
relative productivity CDF of incumbent firms Ft(ẑ), as defined by the non-decreasing
function T : [0, 1] → [0, 1] such that T(0) = 0 and T(1) = 1:11

FE
t (ẑ) = 1 − T[1 − Ft(ẑ)]. (5)

In particular, we assume that this transformation is such that the right tail of the relative
productivity distribution decays faster for entrants than incumbents:

lim
ẑ→∞

1 − FE
t (ẑ)

1 − Ft(ẑ)
= 0.

As discussed in Section 3.3, we impose this condition to achieve a unique stationary
distribution of relative productivity on a balanced growth path (e.g., a simple power
function for T satisfies this condition if the exponent is greater than one).

Resource Constraints

The final good can either be consumed or invested in physical capital:

K̇t + δKt + Ct ≤ Yt where Kt ≡
∫ ∞

0
kt(ẑ)dMt(ẑ). (6)

Here, δ > 0 is the rate at which capital depreciates and Mt(ẑ) = Ft(ẑ)Mt denotes the
cumulative density of firms with relative productivity below ẑ at time t. Labor supplied

10Productivity shocks are independent and identically distributed across firms.
11This type of transformation is often referred to as a dual distortion function.
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by the household can be allocated to either production, innovation, entry, or overhead:

Lt + It + cEEt + cOMt ≤ Ht (7)

where Et denotes the aggregate flow of entry, and the aggregate allocations of labor to
production and innovation are defined as:

Lt ≡
∫ ∞

0
lt(ẑ)dMt(ẑ) and It ≡

∫ ∞

0
i(γt(ẑ), ẑ)dMt(ẑ).

Laws of Motion

Denoting the density of firms with relative productivity equal to ẑ at time t by mt(ẑ),
the Kolmogorov forward (KF) equation describing its evolution over time is:

ṁt(ẑ) = Ftmt(ẑ) + Et f E
t (ẑ) ∀ẑ > 0. (8)

Here, f E
t (ẑ) is the probability density function from which entrants draw their relative

productivity, and Ft is a functional operator defined as:

Ftmt(ẑ) ≡ −∂ẑ[(γt(ẑ)− gt)mt(ẑ)] + (σ2/2)∂ẑẑmt(ẑ)− χmt(ẑ) (9)

where ∂ẑ and ∂ẑẑ denote the first and second partial derivative operators with respect to
ẑ. The measure of varieties then follows the law of motion:

Ṁt = Et − χMt − (σ2/2)M′′
t (0).

The economic environment is summarized in Table 1.

3.2 Decision Problems

We now define the decision problems of economic agents, which determine equilibrium
prices and quantities on the final good, varieties, labor, and asset markets. In terms of
market structure, we assume that all agents partake in perfect competition in all markets
besides intermediate firms who engage in monopolistic competition and choose the
price at which to sell their variety.
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Table 1: The economic environment

(1) U0 =
∫ ∞

0 e−ρt[ln(Ct)− v(Ht)]dt Preferences

(2)
∫ ∞

0 Υ(ŷt(ẑ))dMt(ẑ) = 1 Final good production technology

(3) yt(ẑ) = exp(ẑ + zt)kt(ẑ)αlt(ẑ)1−α Variety production technology

(4) dẑt = (γt − gt)dt + σdBt Innovation technology

(5) FE
t (ẑ) = 1 − T[1 − Ft(ẑ)] Entrants’ productivity distribution

(6) K̇t + δKt + Ct ≤ Yt Final good resource constraint

(7) Lt + It + cEEt + cOMt ≤ Ht Labor resource constraint

(8) ṁt(ẑ) = Ftmt(ẑ) + Et f E
t (ẑ) Incumbents’ productivity density

The Household’s Problem

Taking prices as given, the household’s problem is to choose its consumption and hours
worked to maximize lifetime utility subject to a flow budget constraint:

max
{Ct,Ht}t≥0

∫ ∞

0
e−ρt[ln(Ct)− v(Ht)]dt s.t. Ȧt = rt At + wtHt − Ct

where wt denotes the wage rate, At is the value of physical capital and corporate assets,
and rt is the rate of return on those assets:

At = Kt +
∫ ∞

0
Vt(ẑ)dMt(ẑ) where lim

t→∞
e−
∫ t

0 rt′dt′ At = 0.

Here, Vt(ẑ) denotes the value of a firm with relative productivity ẑ, which is yet to be
defined. The household’s problem thus delivers the usual intertemporal Euler equation
and static first-order condition:

Ċt

Ct
= rt − ρ and v′(Ht)Ct = wt.
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The Final Sector’s Problem

Taking prices as given, the final sector’s problem is to choose its relative demand for
each variety to maximize profits in each period:

max
{ŷt(ẑ)}∞

ẑ=0

{
Pt −

∫ ∞

0
pt(ẑ)ŷt(ẑ)dMt(ẑ)

}
Yt s.t.

∫ ∞

0
Υ(ŷt(ẑ))dMt(ẑ) = 1

where Pt and pt(ẑ) respectively denote the price of the final good and the price charged
by a firm with relative productivity ẑ. Therefore, this problem delivers the following
inverse demand functions:

pt(ẑ) = Υ′(ŷt(ẑ))PtDt where Pt ≡
∫ ∞

0
pt(ẑ)ŷt(ẑ)dMt(ẑ).

Here, the final good is chosen as the numéraire such that Pt = 1 for all t and Dt is a
demand index defined as:

Dt ≡
(∫ ∞

0
Υ′(ŷt(ẑ))ŷt(ẑ)dMt(ẑ)

)−1

.

The Firm’s Static Problem

Firms engage in monopolistic competition in the product market but perfect competition
in the input markets. A firm chooses the price at which to sell its variety and its demand
for physical capital and production labor to maximize profits in each period. The firm
takes as given the demand for its variety, the rental rate of capital rt and the wage rate
wt, which delivers the following problem:

πt(ẑ) = max
pt(ẑ),kt(ẑ),lt(ẑ)

{pt(ẑ)yt(ẑ)− (rt + δ)kt(ẑ)− wtlt(ẑ)} − wtcO

s.t. pt(ẑ) = Υ′(ŷt(ẑ))Dt.

The firm’s optimal choices of physical capital and production labor imply that we can
rewrite the problem as:

πt(ẑ) = max
pt(ẑ)

{[pt(ẑ)− ςt exp(−ẑ − zt)]ŷt(ẑ)}Yt − wtcO
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where ςt denotes the producer price index of inputs:

ςt ≡
(

rt + δ

α

)α ( wt

1 − α

)1−α

.

This, in turn, implies that the firm sets its price to a markup µt(ẑ) above marginal cost:

pt(ẑ) = µt(ẑ)×
ςt

exp(ẑ + zt)
where µt(ẑ) ≡

ϑt(ẑ)
ϑt(ẑ)− 1

and where ϑt(ẑ) denotes the price elasticity of demand:

ϑt(ẑ) ≡ − Υ′(ŷt(ẑ))
Υ′′(ŷt(ẑ))ŷt(ẑ)

∈ (1, ∞).

Since the markup function is monotonic in relative demand, which is itself monotonic in
the firm’s price, a unique solution exists for the latter as an implicit function of relative
productivity and calendar time. As such, firm-level profits can be expressed as:

πt(ẑ) =
pt(ẑ)ŷt(ẑ)Yt

ϑt(ẑ)
− wtcO.

The Firm’s Dynamic Problem

Given the above static profit function and taking the wage rate as given, firms control
the drift of their productivity and choose an optimal exit time τ at which to shut down
operations:

Vt(ẑ) = max
τ,{γs}s≥t

Eẑ

{∫ t+τ

t
e−
∫ s

t (rt′+χ)dt′ [πs(ẑs)− wsi(γs, ẑs)]ds
}

where Eẑ denotes the expectation operator with respect to the diffusion process {ẑs}s≥t

when its initial value is ẑt = ẑ. Within the continuation region of productivity (i.e.,
where it is not optimal to exit), the firm’s value function satisfies the standard Hamilton-
Jacobi-Bellman (HJB) equation:

rtVt(ẑ) = πt(ẑ) + max
γ

{AtVt(ẑ)− wti(γ, ẑ)}+ V̇t(ẑ)

where At is a functional operator defined as:

AtVt(ẑ) ≡ (γt(ẑ)− gt)∂ẑVt(ẑ) + (σ2/2)∂ẑẑVt(ẑ)− χVt(ẑ). (10)
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The firm’s HJB equation satisfies the value matching, smooth pasting, and first-order
conditions:

Vt(0) = V′
t (0) = 0 and V′

t (ẑ) = wt ×
∂i(γ, ẑ)

∂γ
.

The Entrant’s Problem

Entrants engage in perfect competition on the labor market and, therefore, choose a flow
of entry to maximize future expected profits while taking the wage rate as given:

VE
t = max

Et

{
Et

∫ ∞

0
Vt(ẑ)dFE

t (ẑ)− wtcEEt

}
.

The first-order condition of the entrant’s problem delivers what will be referred to as the
free-entry condition, which is here written in complementary-slackness form:(∫ ∞

0
Vt(ẑ)dFE

t (ẑ)− wtcE

)
Et = 0.

The derivations of the optimality conditions are presented in Appendix A.1.

3.3 Equilibrium Allocation

Now that all decision problems have been described, we can define the concept of an
equilibrium allocation.

Definition 1. Given initial conditions {z0, K0, m0(ẑ)}, an equilibrium allocation consists of
time paths for quantities, prices, and policy functions such that the following conditions hold:

1. {Ct, Ht}t≥0 solve the household’s problem.

2. {ŷt(ẑ)}t≥0 solve the final sector’s problem.

3. {pt(ẑ), kt(ẑ), lt(ẑ)}t≥0 solve the firm’s static problem.

4. {γt(ẑ), zt}t≥0 solve the firm’s dynamic problem.

5. {Et}t≥0 solves the entrant’s problem.

6. {Yt}t≥0 satisfies the Kimball (1995) aggregator.

7. {pt(ẑ)}t≥0 clear the variety markets.

18



8. {wt}t≥0 clears the labor market.

9. {rt}t≥0 clears the asset market.

10. The capital stock evolves according to equation (6).

11. The density of firms evolves according to equation (8).

Aggregation

Despite its complex structure, our theory admits tractable aggregation of the equilibrium
allocation. In particular, aggregate output can be expressed as:

Yt = ZtKα
t L1−α

t where Zt ≡
(∫ ∞

0
ŷt(ẑ) exp(−ẑ − zt)dMt(ẑ)

)−1

.

Here, Zt denotes the economy’s TFP, which is a quantity-weighted harmonic aggregate
of firm-level productivity. The aggregate demand for physical capital and production
labor is given by:

Kt =
αYt

(rt + δ)Mt
and Lt =

(1 − α)Yt

wtMt

where Mt denotes the cost-weighted average of firm-level markups:

Mt ≡
∫ ∞

0 µt(ẑ)ŷt(ẑ) exp(−ẑ)dFt(ẑ)∫ ∞
0 ŷt(ẑ) exp(−ẑ)dFt(ẑ)

. (11)

Therefore, we recover the result from Edmond et al. (2023) that the “aggregate” markup
reduces the quantity of variable inputs used in production.

Balanced Growth Path

With these aggregation results, we now define the concept of a balanced growth path
(BGP) equilibrium allocation. The following propositions characterize the growth rate
of TFP and the asymptotic behavior of the relative productivity distribution on this BGP.

Definition 2. A BGP equilibrium allocation is an equilibrium allocation as defined in Definition
1 such that all quantities, prices, and policy functions are either stationary or grow at a constant
rate, and the distribution of relative productivity is stationary.
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Since the economy is growing over time, the distribution of firm-level productivity
behaves as a “traveling wave”. Hence, for this distribution to be stationary, it must
be normalized by a variable that travels at the same speed on a BGP. Here, we choose
this variable to be the endogenous exit threshold such that the scale of the productivity
distribution (and of the economy more generally) is determined by the initial condition
for that threshold.12 On a BGP, the growth rate of TFP is characterized by the following
proposition.

Proposition 3. Letting the price elasticity of demand ϑ(ẑ) as well as the firm’s productivity
pass-through ϱ(ẑ) be defined as in Section 2, the stationary growth rate of TFP can be decomposed
into the contribution of (1) incumbent firms’ productivity drift, (2) incumbent firms’ productivity
volatility, (3) endogenous exit and (4) exogenous exit:

g =

∫ ∞
0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)γ(ẑ)dF(ẑ)∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)
Incumbents’ drift

−
(σ2/2)

∫ ∞
0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF′(ẑ)∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)
Incumbents’ volatility

+
(σ2/2)F′′(0)[

∫ ∞
0 ŷ(ẑ) exp(−ẑ)dFE(ẑ)− ŷ(0)]∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)
Endogenous exit

−
χ[
∫ ∞

0 ŷ(ẑ) exp(−ẑ)dF(ẑ)−
∫ ∞

0 ŷ(ẑ) exp(−ẑ)dFE(ẑ)]∫ ∞
0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)

Exogenous exit.

Here, the growth rate of TFP is also denoted by g since it must be equated to the
growth rate of the endogenous exit threshold on a BGP.

Despite its complexity, the growth rate derived in Proposition 3 is similar to those
obtained in other prominent endogenous growth models.13 To see this, suppose for
simplicity that the price elasticity of demand is constant ϑ(ẑ) = θ > 1, the productivity
pass-through is constant and complete ϱ(ẑ) = 1 and the productivity drifts are constant
γ(ẑ) = γ > 0.14 Suppose further that entrants draw their productivity as to capture
a fraction sE < 1 of the average market share of incumbent firms while endogenously
exiting firms’ market share is equal to a fraction sX < sE of that average. Under those

12In all theories of exponential economic growth, the scale of the economy is determined by the initial
condition of the underlying linear ordinary differential equation (e.g., the initial capital stock in the “AK”
model, the initial level of technology in the neoclassical growth model, or the initial population level in
the Jones (1995) model).

13See Lashkari (2023) for a discussion of the growth rate that arises in different theories of endogenous
technological change.

14The assumptions of a constant price elasticity of demand and a complete pass-through are obtained
with a CES demand function.
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assumptions, the above formula boils down to:

g = γ +
(θ − 1)σ2

2
+

σ2F′′(0)(sE − sX)

2(θ − 1)
− χ(1 − sE)

θ − 1
.

The first term reflects the positive contribution of incumbent firms’ productivity drift
to economic growth. The second term reflects how the volatility of incumbent firms’
productivity contributes positively to growth. Indeed, since varieties are substitutes
(θ > 1), independent productivity shocks allow the final sector to reallocate expenditures
from varieties that receive bad productivity shocks to those that receive good ones. The
third and fourth terms reflect the contribution of entry and exit, by which entrants
replace two types of firms: (1) the least productive firms who are swept below the
endogenous exit threshold at rate (σ2/2)F′′(0) and (2) randomly selected firms who exit
exogenously at rate χ. Since the measure of varieties is constant on a BGP, entry does
not contribute positively to growth through a “love for variety”.15

The general formula provided in Proposition 3 further accounts for heterogeneity in
demand elasticities, pass-throughs, and productivity drifts. This heterogeneity matters
in that productivity improvements can be translated into further economic growth if
(1) they are rolled out over more units produced, (2) they are passed on through lower
prices, and (3) these lower prices are rewarded with additional demand. To see this,
notice that the term reflecting the growth contribution of incumbents’ investments in
R&D is a weighted average of their productivity drifts:

∫ ∞

0
ω(ẑ)γ(ẑ)dẑ where ω(ẑ) ≡ [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)F′(ẑ)∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)F′(ẑ)dẑ
.

In particular, the term ŷ(ẑ) exp(−ẑ) in the “weights” ω(ẑ) is proportional to a firm’s
total expenditures on inputs, whereas the term ϑ(ẑ)ϱ(ẑ)− 1 denotes the elasticity of
those expenditures with respect to the firm’s productivity. Hence, these weights reflect
the extent to which a firm differentially expands in scale following an improvement in its
process efficiency.

Intuitively, this implies that the rate of TFP growth will be higher if the firms that
achieve the largest drift in productivity are not only larger and more numerous but also
the firms towards which demand is mostly reallocated as a result. The magnitude of
this correlation depends on the stationary distribution of relative productivity, whose
asymptotic behavior is characterized by the following proposition.

Proposition 4. On a BGP, if χ > 0, limẑ→∞ γ(ẑ) = γ < ∞ and the transformation function

15This is a result of our assumption of a constant population.
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T satisfies the assumptions described in Section 3, the distribution of relative productivity
asymptotes to an exponential distribution as ẑ → ∞:

lim
ẑ→∞

F(ẑ) = 1 − exp(−λẑ) where λ ≡ g − γ +
√
(g − γ)2 + 2χσ2

σ2

and where g is the stationary growth rate of TFP. If g > γ+σ2/2−χ, the stationary distribution
of exp(ẑ) is Pareto with shape parameter λ > 1 and has a finite mean.

The rate parameter λ of the exponential tail is inversely related to the dispersion in
relative productivity. Hence, more churning from a higher growth rate g or a higher
exit rate χ implies a thinner right tail. In contrast, a higher instantaneous productivity
volatility σ implies a fatter right tail. Since TFP growth is endogenous, Proposition 4
illustrates how firm-level heterogeneity determines aggregate economic growth, which
determines the extent of this heterogeneity.

3.4 Characterization

For our theory to deliver quantifiable predictions, we impose additional parametric
functional form assumptions on preferences and technologies. This subsection describes
those choices, which are both standard in the literature and consistent with relevant
empirical regularities.

In terms of preferences, we assume that the household has standard MaCurdy (1981)
flow disutility from hours worked:

v(H) = β × H1+η

1 + η

where η > 0 is the inverse of the Frisch elasticity of labor supply and β > 0 is the utility
weight on hours worked.

The final sector’s Kimball (1995) production technology is defined according to the
functional form introduced by Klenow and Willis (2016):16

Υ(ŷ) = 1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1

[
Γ
(

θ

ϵ
,

1
ϵ

)
− Γ

(
θ

ϵ
,

ŷϵ/θ

ϵ

)]

where θ > 1 and ϵ > 0. Note that as ϵ → 0, this functional form converges to the Dixit
and Stiglitz (1977) aggregator with constant elasticity of substitution across varieties.

16Here, Γ(s, x) =
∫ ∞

x ts−1e−tdt denotes the upper incomplete gamma function.
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This functional form is chosen because it is flexible enough to capture two important
empirical regularities, sometimes referred to as Marshall (1890)’s second and third laws
of demand (Matsuyama and Ushchev, 2022). These properties of demand state that
the price elasticity of demand increases in the price charged, whereas its rate of change
(the “super-elasticity” of demand) decreases therein. This implies that, in equilibrium,
more productive firms are larger and command both higher markups and lower pass-
throughs, which is empirically documented in Amiti et al. (2014) and Amiti et al. (2019).
Specifically, these markups and pass-throughs take the following form as functions of
relative demand:

µ(ŷ) =
θ

θ − ŷϵ/θ
and ϱ(ŷ) =

θ − ŷϵ/θ

θ + ϵ − ŷϵ/θ
.

As in Acemoglu et al. (2018) and Akcigit and Kerr (2018), the firm’s innovation
technology is characterized by an isoelastic cost function:

i(γ, ẑ) =
exp[cI + (1 + ζ)ẑ]γ1+ζ

1 + ζ

where cI > 0 measures the scale of that cost function and ζ > 0 disciplines its elasticity.
In particular, this functional form implies that all firms must allocate the same quantity
of labor to achieve a given absolute drift of relative productivity. Therefore, achieving a
proportional drift becomes more costly as a firm becomes more productive.

Finally, we follow Benhabib et al. (2021) and choose the transformation function
T(x) = xξ where ξ > 1 such that:

FE
t (ẑ) = 1 − [1 − Ft(ẑ)]ξ .

This functional form is parsimonious and can satisfy the required assumptions to achieve
a stationary distribution of relative productivity on a BGP. Specifically, for ξ > 1, entrants
start producing with lower relative productivity than incumbents on average. Table 2
summarizes the functional form assumptions.

4 Quantification

In this section, we present the estimation of our theory’s structural parameters, which
is performed via a GMM strategy, targeting aggregate and firm-level moments from
France. We first describe the data from which these moments are calculated, after which
we discuss the identification of each parameter.
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Table 2: Functional forms

Function Source

v(H) = β × H1+η

1+η MaCurdy (1981)

Υ(ŷ) = 1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1
[
Γ
(

θ
ϵ , 1

ϵ

)
− Γ

(
θ
ϵ , ŷϵ/θ

ϵ

)]
Klenow and Willis (2016)

i(γ, ẑ) = exp[cI + (1 + ζ)ẑ]γ1+ζ/(1 + ζ) Acemoglu et al. (2018)

FE
t (ẑ) = 1 − [1 − Ft(ẑ)]ξ Benhabib et al. (2021)

4.1 Data

Our primary source of data is the Fichier Approché des Résultats d’Esane (FARE), which is
an annual panel dataset with the balance sheet and income statements of all firms in
France that are subject to the standard corporate tax (excluding the financial and farming
sectors). Our sample consists of 5.4 million (firm-year) observations between 2009 and
2019, with around 830 thousand unique firms overall and 460 thousand firms each
year.17 The variables of interest are the firm’s main industry of operation, value-added,
wage bill, and its stock of capital.

From this data, we measure the markup of firm j from industry i in year t as:18

µjit =
pjityjit

[(rt + δ)k jit]αit(wtljit)1−αit

where pjityjit is its value-added, k jit is its stock of capital (in current value), wtljt is its
total expenditures on labor and αit is the output elasticity of physical capital, which
we assume is common to all firms in the same 2-digit NACE industry.19 Given the
Cobb-Douglas production function, we calculate this elasticity as the cost-weighted

17Refer to Appendix C for details on criteria we set for inclusion of an observation in our sample.
18This uses Euler’s theorem and abstracts from the proportionality term αα(1 − α)1−α. We verified that

including that term affects the level of the implied markups but not their correlation with market shares.
19See Appendix C for further details on the construction of each variable used in the measurement of

firm-level markups.
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average of each firm’s capital cost share in industry i and year t:20

αit = ∑
j∈i

ωjit(rt + δ)k jit

[(rt + δ)k jit + wtljit]
where ωjit ≡

(rt + δ)k jit + wtljit

∑j∈i[(rt + δ)k jit + wtljit]
.

Finally, we define a firm’s market share as the share of value-added it captures in a given
year within its 5-digit NACE industry. The empirical relationship between the logarithm
of markups and that of market shares is plotted in Figure 2(a) as a binned scatter plot.
Not only do we recover evidence for Marshall (1890)’s second law of demand, which
has been documented in many other settings, but the relationship between markups and
market shares is remarkably log-linear. In Figure, 2(b), we plot the empirical histogram
of firm-level value-added (in proportion to the industry mean) from which the extent of
size dispersion in the data is evident.

Figure 2: Markups and Firm Size

(a) Markups and Market Shares (b) Value-Added Histogram

Note: The underlying data for these two plots is from the FARE dataset between 2009 and 2019. Markups
and market shares are calculated as described in Section 4.1. In Panel 2(a), year, industry, industry-year,
firm, and age fixed effects are removed from each variable before plotting the 100 bin-scatter points. In
Panel 2(b), the 2-digit industry mean is removed from firm-level value-added such that the histogram is
expressed in proportion to the industry mean.

20The chosen value for rt + δ is consistent with the equilibrium interest rate of our model and the rate
of physical capital depreciation we assumed.
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4.2 Structural Estimation

Our theory features 14 parameters to be determined, collected in the set Ω:

Ω = {ρ, β, η, θ, ϵ, α, δ, cO, σ, cI , ζ, cE, ξ, χ}.

We assign conventional values to {ρ, η, α, δ}, normalize cO, and estimate or normalize
the remaining parameters. We set the representative household’s rate of time preference
ρ to 0.04, the parameter η to one to deliver a unit Frisch elasticity of labor supply, the
capital share to 1/3, and the depreciation rate of physical capital to 0.06.21 The overhead
cost parameter cO is normalized without loss of generality.22

We then independently identify the following three parameters {β, χ, ϵ/θ} with three
moments. First, the utility weight on labor supply β is chosen to match average hours
worked per year per person in France between 1995 and 2019.23 Second, the exogenous
exit rate χ is set equal to the average exit rate of 1.34% for firms with more than ten
employees between 2009 and 2019 in France.24 Third, the ratio ϵ/θ of the Klenow and
Willis (2016) elasticity and super-elasticity parameters is estimated from the relationship
between firm-level markups and market shares in our data. Figure 3 illustrates how that
relationship depends on the value ascribed to the ratio ϵ/θ.

Following Edmond et al. (2023), we show in Appendix C that in a generalization
of our theory (with time-varying industry-level demand shifters and time-invariant
firm-level demand shifters), this relationship is nonlinear and given by:

µ−1
jit + ln(1 − µ−1

jit ) = b + bt + bi + bit + bj + (ϵ/θ) ln(sjit) where sjit ≡
pjityjit

PitYit
.

Here, sjit denotes the market share of firm j operating within industry i in year t, b is
a constant, bt is a time fixed effect, bi is an industry fixed effect, bit is a time-industry
fixed effect and bj is a firm fixed effect. We estimate this relationship in the FARE data
using our firm-level markup and market share measurements described in Section 4.1.
The results of this estimation exercise are reported in Table 3 for the entire sample and
for the manufacturing sector only. In our preferred specification with all levels of fixed
effects, we obtain an estimate of ϵ/θ = 0.243 with a standard error of 0.001 clustered at

21The cross-year average of the industry capital shares αit we measure in the FARE data is equal to 0.22.
To deal with this discrepancy, we consider a robustness check in Appendix C.3 where we inflate capital
shares by a constant such that they aggregate to our model’s capital share of 1/3.

22Given an initial condition for the exit threshold, we choose its value such that aggregate output is
normalized to unity in our model’s initial stationary equilibrium.

23For a time endowment of 16 hours per day and 365 days per year, the average of 1540.3 hours worked
per person per year (calculated from EU-KLEMS) implies a value of 1540.3/(16 × 365) ≈ 0.26 for Ht.

24This moment is calculated from Eurostat’s Business Demography Statistics, which goes back to 2008.
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Figure 3: Markups and Market Shares

Note: This figure plots the relationship between firm-level markups and market
shares, where the horizontal axis is defined on a logarithmic scale. Units are omitted
for that axis since they provide no information.

the firm level. This is in line with the estimates reported in Edmond et al. (2023) and
Amiti et al. (2019) who find values of 0.16 and 0.32, respectively. The latter identify this
ratio by matching the variability in markups and resulting pass-throughs among Belgian
manufacturing firms.

Finally, the remaining six parameters {σ, cI , ζ, cE, ξ, θ} are jointly identified by the
following six moments via a GMM estimation strategy:

1. An aggregate (cost-weighted average) markup of 1.3, averaging the range of 1.1 to
1.5 estimated by De Ridder et al. (2023) using the FARE (manufacturing) data.

2. The average annual growth rate of 1.16% of real GDP per hour worked in France
between 1995 and 2019 calculated from EU-KLEMS’s national growth accounts.

3. The average annual growth rate of (deflated) firm-level value added of 1.24%
calculated from the FARE data.

4. The average annual exit rate of 5.61% among all French firms between 2009 and
2019 calculated from Eurostat’s Business Demography Statistics.
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Table 3: Markups and Market Shares

Dependent variable: µ−1
jit + ln(1 − µ−1

jit )

Full sample Manufacturing

ln(sjit) 0.047 0.234 0.243 0.049 0.321 0.331
(0.000) (0.001) (0.001) (0.001) (0.004) (0.004)

Firm fixed effects Y Y Y Y
Industry × year fixed effects Y Y Y Y Y Y
Industry fixed effects Y Y
Year fixed effects Y Y
Age group fixed effects Y Y Y Y

R2 0.090 0.505 0.507 0.056 0.489 0.490
Observations 4.9M 4.9M 4.9M 0.5M 0.5M 0.5M

Note: Firm-level markups and market shares are constructed from the FARE dataset as described in
Section 4.1. This table presents different regression specifications with firm fixed effects, 5-digit NACE
industry fixed effects, and age group fixed effects (for 20 evenly-spaced age groups). Standard errors
(in parentheses) are clustered at the firm level. The total number of observations is below the total
sample size of 5.4M because negative markups were estimated for some firms.

5. The average size (value added) of entrants relative to incumbents of 31% calculated
from the FARE data.

6. The within-industry standard deviation of log value added of 1.54 calculated from
the FARE data.

The objective we minimize is the squared percent deviation between these moments
and their counterpart in our theory’s stationary equilibrium allocation. We pose this
estimation exercise as a mathematical program with equilibrium constraints (MPEC) (Su
and Judd, 2012; Dubé, Fox and Su, 2012). Doing so allows us to perform the parameter
search without repeatedly solving the model’s equilibrium conditions at each guess of
parameters.25 Table 4 reports the resulting values of our structural parameters.

Table 5 compares the empirical and theoretical moments listed above, evaluated at
the estimated parameter values. All of our targeted moments are matched with relatively
high accuracy. Our model also replicates several untargeted moments in the FARE data,

25Appendix B.2 describes this exercise in detail and provides a formal discussion on identification.
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Table 4: Structural Parameters

Parameter Symbol Value

Household preferences:
Rate of time preference ρ 0.04
Labor supply utility weight β 10.3
Frisch elasticity of labor supply reciprocal η 1

Final sector technology:
Klenow and Willis (2016) elasticity parameter θ 14.9
Klenow and Willis (2016) super-elasticity parameter ϵ 3.62

Firm production technology:
Output elasticity of physical capital α 0.33
Depreciation rate of physical capital δ 0.06
Overhead cost parameter cO 0.03

Firm innovation technology:
Brownian motion standard deviation σ 0.03
Innovation cost scale parameter cI 9.23
Innovation cost elasticity parameter ζ 0.99

Entry and exit:
Entry cost parameter cE 6.61
Entry distribution parameter ξ 1.71
Exogenous exit rate χ 1.34%

Note: This table presents the assigned/estimated structural parameters of our theory.

such as the Gini coefficient of value-added, the share of total value-added captured
by the largest firms, the relative size of entrants by employment, and the average and
median age of a firm. It is also consistent with the empirically evidenced decreasing
relationships between (1) the rate of exit and firm age (Caves, 1998), and (2) firm-level
sales volatility and firm size (Yeh, 2021).

Figure 4 plots several static firm-level outcomes against relative productivity, where
the stationary distribution of the latter is plotted in transparency to emphasize the
“relevant” domain of each of those functions. Panel 4(a) plots the downward-sloping
elasticity of the demand schedule faced by the firm, illustrating Marshall (1890)’s second
law of demand. Panel 4(b) plots the price chosen by the firm (relative to the choke price),
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Table 5: Moments

Moment Source Model Data

Targeted:
Aggregate markup FARE 1.30 1.30
GDP per hour worked growth rate EU-KLEMS 1.23% 1.16%
Incumbent value added growth rate FARE 1.18% 1.24%
Exit rate of all firms Eurostat 5.32% 5.61%
Relative size of entrants by value added FARE 0.30 0.31
Standard deviation of log value added FARE 1.51 1.54

Untargeted:
Gini coefficient of value added FARE 0.78 0.73
Top 5% value added share FARE 52% 51%
Top 10% value added share FARE 70% 64%
Relative size of entrants by employment FARE 0.33 0.32
Average firm age FARE 27.8 19.3
Median firm age FARE 15.1 15.7

Note: This table presents moments (targeted or not in our GMM estimation exercise) and their resulting
value in our model. Moments measured in the FARE data are first calculated within 2-digit NACE
industries and then aggregated with each industry’s share of total value added.

while Panel 4(c) plots the implied markup over marginal cost, which is increasing in size.
Finally, Panel 4(d) plots the market share captured by more or less productive firms.

In Figure 5, we present the probability distribution function of firm-level markups,
including various percentiles. Although our target is a cost-weighted average markup of
1.3, the unweighted median markup stands notably lower at 1.1. The implied dispersion
in markups also appears more modest than its empirical counterpart. While we infer an
interquartile range of 0.05 for the logarithm of markups, De Ridder et al. (2023) estimate
values of 0.48 and 0.2, respectively, using information on quantities or revenues from
the FARE data (for the manufacturing sector). This illustrates that our model strictly
captures the markup dispersion systematically related to firm size. In that sense, our
estimation strategy leans somewhat conservatively on the extent of such dispersion.
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Figure 4: Static Firm-Level Outcomes

(a) Demand Elasticity (b) Relative Price

(c) Markup (d) Market Share

Note: Here, all variables are defined according to the estimated values for θ and ϵ, which are reported in
Table 4. The distribution plotted in transparency is the stationary distribution of relative productivity.
Units are omitted on axes where they are not informative.

Parameter Identification

While the six parameters {σ, cI , ζ, cE, ξ, θ} are jointly identified by the six moment con-
ditions above, we see it as informative to intuitively discuss the reasoning behind our
selection of these six moments. Appendix B.2 provides a more formal analysis of the
identification of these parameters.

We include the aggregate markup as a target in our estimation exercise since it directly
affects how much firms limit the scale at which they operate in partial equilibrium.26

26Edmond et al. (2023) find that the “static” welfare losses from markups exhibit significant convexity
in the aggregate markup target.
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Figure 5: Distribution of Firm-Level Markups

Note: This figure plots the unweighted distribution of firm-level markups with its
1st, 25th, 50th, 75th and 99th percentiles. The interquartile range of the logarithm
of markups is equal to 0.05, which is more modest than the values of 0.48 and 0.2
estimated by De Ridder et al. (2023) on quantity and revenue data, respectively.

While none of the aforementioned parameters explicitly appear in the expression for the
aggregate markup, {σ, cI , ζ, ξ, θ} directly affect the shape of the productivity distribution
over which firm-level markups are aggregated and are, in that sense, identified by that
aggregate. This is evident from the KFE in equation (8), in which these parameters
appear either through the firm-level productivity process, the Kimball (1995) aggregation
condition, or the dynamics of entry and exit.

We aim for a value of 1.3 for the aggregate markup, which aligns with the range of
values estimated by De Ridder et al. (2023) using the FARE data for the manufacturing
sector. More precisely, they calculate the sales-weighted harmonic average markup to
be approximately equal to 1.1 or 1.5 with revenue and quantity data, respectively. Our
choice of targeting the average of these two estimates is motivated by recent evidence
that markups are challenging to identify with either revenue or production data (Bond,
Hashemi, Kaplan and Zoch, 2021; De Ridder et al., 2023; Flynn, Traina and Gandhi, 2019;
Raval, 2023).27 In Section 5.5, we consider how our results change as we aim for lower
or higher values.

27For different empirical counterparts to the markup in our theory, we have estimated cost-weighted
average markups that ranged from 5% to almost 80%.
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We target the aggregate and firm-level value-added growth rate moments with two
objectives in mind. First, it appears important that our parameterization be consistent
with the growth rate of the French economy. Second, comparing this growth rate to that
of continuing firms in the FARE data is indirectly informative about their contribution
to the latter.28 As such, the aggregate and firm-level growth rate moments are intended
to identify the parameters of the firm’s innovation cost function, cI and ζ, thereby
delineating the pace of economic growth and the contribution of incumbent firms to this
progress.

As accentuated in the technology diffusion literature, yet another contribution to
long-run productivity growth comes from the selective survival of successful firms and
the adoption of existing technologies by new entrants. The scope of this contribution
hinges on two factors: (1) the frequency at which underperforming firms are supplanted
by more efficient newcomers and (2) the productivity differential between these two
groups of firms. To discipline these two factors, we target the rate at which firms exit–
which must be equated to the entry rate on a balanced growth path since our model
features a constant population–and the initial value-added of new entrants relative to
incumbents, which positively correlates with productivity in our model.29 Hence, these
two moments partly identify the parameters ξ and σ, where the former regulates the
transformation of the incumbent distribution from which entrants draw their relative
productivity, and the latter directly influences the rate at which unsuccessful firms are
swept below the endogenous exit threshold.

Finally, we include the standard deviation of the logarithm of value added as a target
in our estimation exercise, enabling us to regulate the extent of markup dispersion. Our
model posits that the sole source of dispersion in markups across firms comes from their
endogenous differences in process efficiency, which cause them to charge varying prices
at which demand is more or less elastic. That is, the extent of dispersion in markups is
intrinsically tied to the degree of heterogeneity in firm size. As contended in Edmond et
al. (2023), we regard this approach as more conservative than the alternative of directly
targeting the empirically observed dispersion in markups, which could instead reflect
dispersion in other types of distortions unrelated to markups.

28Despite the absence of a clear, direct empirical counterpart, there have been attempts to infer this
contribution indirectly, as evidenced by Luttmer (2007) and Garcia-Macia et al. (2019).

29We target the exit rate rather than the entry rate, since the latter may reflect long-run growth in the
number of firms, which is not a feature of our model.
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5 Counterfactual Analysis

To quantify how heterogeneous markups differentially distort firms’ incentives to invest
in R&D, we implement size-dependent subsidies to production, inducing each firm
to price at marginal cost. We analyze how firm-level decisions, their aggregation, and
economic growth endogenously respond to this intervention.

5.1 Policy Intervention

Why do we consider such a particular policy intervention rather than simply comparing
the economy’s laissez-faire and optimal resource allocations? The reason is that, in order
to achieve a stationary distribution of relative productivity, our economic environment
features technological spillovers across firms, which introduces externalities that are
not intrinsically tied to markups.30 Therefore, a comparison of the laissez-faire and
optimal allocations would not isolate the consequences of markups for economic growth.
Instead, the implementation of subsidies devised to compel firms to price at marginal
cost directly addresses the product market distortions induced by markups, which is
the focus of this paper. Following Edmond et al. (2023), we show in Appendix A.1.8 that
the size-dependent subsidy scheme Tt(ŷ) that achieves this is:

Tt(ŷ) = [Υ(ŷ)−Υ′(ŷ)ŷ]YtDt (12)

which we assume is financed by lump-sum taxes levied on the household.31 Under this
policy, firms optimally price at marginal cost as the subsidy schedule outlined in equation
(12) is such that they consider the final sector’s output rather than their revenue as part
of their objective. That is, these subsidies enable firms to capture the entire consumer
surplus. However, since the representative household holds a diversified portfolio of all
firms in the economy, this surplus is returned to it in the form of dividends.

As the intervention is rolled out, firms operate at a larger scale. This is depicted in
Panel 6(a), which plots firms’ production employment in both the pre- and post-policy
stationary equilibria. In most of the figures that follow, the horizontal axis is represented
by a firm’s initial markup before the intervention, and its range covers more than 99.9%
of the measure of firms. Notably, production employment increases for all firms but
is also reallocated towards larger, more productive firms that initially commanded a
higher markup. While firm-level production employment roughly doubles on average,

30These externalities are further discussed in Section 5.4 and appear in Appendix A.1.8, where we
derive the optimal allocation of resources.

31This policy intervention is large in magnitude, equivalent to about 29% of aggregate output.
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it almost triples for the largest firms. The reallocation of innovation employment is even
starker, as illustrated in Panel 6(b). On average, firm-level innovation employment more
than triples. Yet, it shrinks by about 75% for the least productive firms, while their most
productive counterparts see a more than 5-fold increase in their allocation.

Figure 6: Firm-Level Labor Allocations

(a) Production Employment (b) Innovation Employment

Note: Both functions are plotted over the same support of initial markups, covering more than 99.9% of the
measure of firms both before and after the intervention. The red and orange lines (left axes) respectively
plot labor allocations before and after the policy intervention. The gray line (right axis) plots their ratio
(post- relative to pre-policy).

Table 6 presents the aggregation of these firm-level outcomes. Aggregate demand
for production, innovation, and entry labor increases considerably, matched by a 23%
increase in labor supply.32 However, the aggregate labor allocation to overhead contracts
by 41.8% due to a proportional decrease in the measure of varieties. Although more
resources are allocated to entry due to the greater scale and convexity of profits, the
endogenous exit rate increases disproportionately from 4% to 15.5%, thus depleting the
stock of varieties. As R&D resources are redirected towards more productive firms, the
smallest firms fail to keep up with the competition, trail behind, and eventually exit
(endogenously) at a higher rate.

This dynamic is most clearly illustrated in Figure 7. In particular, Panel 7(a) plots the
firm-level productivity drifts achieved pre- and post-policy. Consistent with Figure 6,
the growth trajectory of the smaller, less efficient firms decelerates post-policy, and, as a
result, they congregate near the exit threshold. This is depicted in Panel 7(b), where it
is shown that the post-policy stationary distribution of relative productivity admits a

32As a reference, Edmond et al. (2023) find, under targeted aggregate markups of 1.25 and 1.35, that the
same policy intervention achieves a 30.1% and 42.1% increase in labor supply, respectively.
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Table 6: Economic Aggregates

Aggregate Before After Change

Labor allocations:
Labor supply 0.264 0.325 +23.0%
Production labor 0.227 0.260 +14.5%
Innovation labor 0.020 0.036 +76.9%
Entry labor 0.015 0.028 +84.7%
Overhead labor 0.002 0.001 -41.8%

Firms, entry and exit:
Measure of varieties 0.044 0.025 -41.8%
Entry rate 5.32% 16.87% +11.6p.p.
Endogenous exit rate 3.97% 15.52% +11.6p.p.

Market concentration:
Top 5% value added share 51.6% 54.6% +3.0p.p.
Top 10% value added share 69.8% 77.2% +7.4p.p.

Note: This table presents the pre- and post-policy level of various economic aggregates as well as the
corresponding percentage change.

higher density of small firms. However, it also features a higher density of fast-growing
large firms, such that the distribution becomes slightly bimodal after the intervention.
Market concentration rises only slightly after the intervention, as presented in the last
two rows of Table 6, which report the share of total value added captured by the top 5%
and 10% largest firms.

A closer look at the firm’s dynamic first-order condition sheds light on the disparity
in growth trajectories depicted in Panel 7(a):

V′
t (ẑ)
wt

=
∂i(γ, ẑ)

∂γ
.

This condition implies that a firm will achieve a larger productivity drift if the resulting
change in its value is large relative to the prevailing wage rate. Despite the absence of an
analytical solution for the former, one can gain insight into what determines the extent
of the firm’s marginal value through the following asymptotic proposition:

Proposition 5. On a balanced growth path, the firm’s value function asymptotes to the present

36



Figure 7: Productivity Drifts and Stationary Distributions

(a) Productivity Drift (b) Stationary Distributions

Note: For consistency, both functions are plotted over the same relative productivity support as in Figure
6. In Panel 7(a), the red and orange lines (left axes) respectively plot productivity drifts before and after
the policy intervention. The gray line (right axis) plots their ratio (post- relative to pre-policy). It is worth
noting that the distributions’ support in Panel 7(b) are defined relative to the least productive firm in each
allocation. The level of the exit threshold may change due to the policy intervention.

discounted value of asymptotic profits:

lim
ẑ→∞

Vt(ẑ) = Vt where Vt ≡
πYtDt − wtcO

ρ + χ

and where the constant π is given by:

π =

(θ − 1) exp[(1 − θ)/ϵ]θθ/ϵ−1 Pre-policy,

1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1Γ
(

θ
ϵ , 1

ϵ

)
Post-policy.

Using Proposition 5 together with the expression for aggregate labor demand, let
us denote the firm’s value function relative to its asymptote by V̂t(ẑ) ≡ Vt(ẑ)/Vt. This
allows us to recast the firm’s dynamic first-order condition as:

πMtLtDt − (1 − α)cO

(1 − α)(ρ + χ)
× V̂′

t (ẑ) =
∂i(γ, ẑ)

∂γ
.

Given that the term πMtLtDt increases by a factor of almost five after the intervention,
all firms would be set on a trajectory of accelerated growth were it not for changes in
the curvature of the firm’s value function. Consequently, the curvature in the subsidy
scheme effectively reallocates innovation employment away from smaller firms towards
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their larger counterparts.

5.2 Long-Run Economic Growth

What are the implications of these findings for long-run economic growth? Our analysis
reveals that the stationary growth rate of TFP increases by 1.2 percentage points, from
0.82% to 2.05%. Due to physical capital accumulation, this leads to a corresponding
increase in the growth rate of aggregate output, from an initially targeted value of 1.23%
to a counterfactual value of 3.08%.

Table 7 provides a breakdown of the pre- and post-policy growth rates, along with
the corresponding change, according to Proposition 3. In particular, this decomposition
presents the contributions of incumbent firms’ productivity drift and volatility, as well as
that of entry and exit. Of noteworthy importance is the role of incumbents’ productivity
drift, which constitutes the largest share of both growth levels (before and after the
intervention): it respectively accounts for 65.5% and 50% of TFP growth in the pre- and
post-policy stationary equilibria. Nonetheless, it contributes slightly less to the growth
rate differential between the two, comprising 39.8% of it. The large remaining share of
the growth rate change is attributed to the contribution from entry and exit.

Table 7: Growth Rate Decomposition

Contribution Before After Change (p.p.)

Incumbent drift 0.54% 1.02% +0.49%

Incumbent volatility 0.18% 0.19% +0.01%

Entry and exit 0.10% 0.84% +0.74%

Total 0.82% 2.05% +1.23%

Note: This table presents the contributions to the level and change of TFP growth.

This latter contribution is an indirect consequence of the R&D reallocation prompted
by the policy. As R&D expenditures are redirected from small, unproductive firms to
their larger, more productive competitors, the former grapple with dwindling resources,
trail behind, and exit at a higher rate. However, these departing firms are replaced by
new entrants who seize the opportunity to replicate the existing technologies of more
productive incumbents. Consequently, the higher churn rate brought about by the R&D
reallocation leads to more frequent improvements in the pool of productivity.
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As discussed in Section 3.3, the growth contribution from incumbent innovation
takes the form of a weighted average of firm-level productivity drifts. Denoting changes
between the pre- and post-policy stationary equilibria by the operator ∆, the change in
this weighted average can be decomposed as:

∆
∫ ∞

0
ω(ẑ)γ(ẑ)dẑ =

∫ ∞

0
∆γ(ẑ)× ω(ẑ)dẑ Productivity growth (62.7%)

+
∫ ∞

0
∆ω(ẑ)× γ(ẑ)dẑ Market expansion (14.9%)

+
∫ ∞

0
∆ω(ẑ)× ∆γ(ẑ)dẑ Covariance (22.4%).

(13)

The first term reflects the average change in firm-level productivity drifts, evaluated over
the initial composition of firms. The second term instead reflects the change in firms’
market expansion responses, keeping their productivity drifts constant. Finally, the third
term captures the covariance between these changes. The “productivity growth” term
accounts for 62.7% of the total, compared to 14.9% and 22.4% for the “market expansion”
and “covariance” terms, respectively.

Therefore, the larger contribution from incumbent innovation is mostly due to (1)
firms simply growing faster on average and (2) initially larger firms achieving the largest
increases in their productivity drift. However, a noteworthy contribution comes from
the heightened correlation between firms’ productivity growth, size, and density. Larger
firms, who initially commanded higher markups and whose scale was consequently
most restricted, achieve disproportionately faster productivity growth, differentially
expand in scale, and become more numerous following the intervention. Accordingly,
process efficiency improvements are rolled out over more units sold.

5.3 Aggregate and Cross-Firm Allocations of R&D

In light of the preceding analysis, a question arises: is the accelerated growth in TFP
the result of a greater aggregate allocation of labor to innovation, or is it attributable to
its reallocation across firms? To elucidate this, we consider an alternative intervention
wherein the baseline subsidies are upheld, but concomitantly, a uniform tax is levied
on firms’ R&D expenditures. This tax is precisely chosen to fix the aggregate allocation
of labor to innovation at a level commensurate with the initial stationary equilibrium,
which isolates the role of R&D reallocation.

The outcomes of this alternate policy are detailed in Table 8. It achieves an increase in
TFP growth equal to 74.8% of the increment observed under the baseline policy, where
variations in the aggregate allocation of labor to innovation were admissible. A little
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Table 8: Growth Rate Decomposition for Fixed Innovation Labor

Contribution Before Baseline Fixed R&D

After Change After Change

Incumbent drift 0.54% 1.02% +0.49% 0.71% +0.17%

Incumbent volatility 0.18% 0.19% +0.01% 0.22% +0.04%

Entry and exit 0.10% 0.84% +0.74% 0.82% +0.72%

Total 0.82% 2.05% +1.23% 1.74% +0.92%

Note: This table presents the contributions to the level and change of TFP growth when fixing or not
the aggregate allocation of labor to innovation to its initial level before the implementation of the policy
intervention. Doing so requires imposing a uniform tax of 44.5% on firms’ expenditures on R&D.

over three-quarters of this accelerated growth results from an intensified selection of
firms. The redistribution of R&D resources from less productive, smaller firms to their
larger, more efficient competitors induces the exit of the former, which are replaced by
more productive newcomers. Furthermore, nearly one-fifth of the uplift in TFP growth
is derived from an expanded contribution from the productivity drift of incumbent
firms. Although the aggregate allocation of labor to innovation is kept fixed, the per-firm
average allocation escalates by 49.7% owing to the diminishing number of firms.

5.4 Aggregate Markup and Markup Dispersion

To get a deeper sense of the driving forces behind the acceleration in TFP growth, we
disentangle the role of the aggregate markup from that of markup dispersion. To do
so, we consider a slightly more general tax and subsidy schedule. As described in
Edmond et al. (2023), the transfers of equation (12) can be generalized with the following
parameterization:

Tt(ŷ) = [τ0Υ(ŷ) + τ1Υ
′(ŷ)ŷ]YtDt (14)

where τ0 and τ1 can be appropriately chosen to either mitigate the level or dispersion in
markups. In particular, we show in Appendix A.1.9 that setting τ0 = 0 and τ1 = Mt − 1
delivers a uniform subsidy scheme, which leaves the dispersion in markups unchanged
from the initial equilibrium, but eliminates the aggregate markup from equation (11).
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Instead, setting τ0 = M−1
t and τ1 = −1 delivers a size-dependent scheme of taxes and

subsidies, which eliminates markup dispersion, holding the aggregate markup fixed.

Table 9 replicates Table 7 but for those alternative schemes. In particular, the two
columns labeled “Level fix” and “Dispersion fix”, respectively refer to the scheme that
either rectifies the level or dispersion in markups. The “Level fix” has a comparatively
muted impact on long-run TFP growth, decreasing it by a slight 4 basis points. This
subdued response is largely due to (1) a nearly unchanged growth contribution from
incumbent firms’ investments in R&D, and (2) a weak reallocation of R&D across firms.
The former reflects a pecuniary externality: as firms expand in scale and demand more
production labor, they bid up the cost of R&D through a higher wage. This conclusion
contrasts with the findings of Edmond et al. (2023), who infer an important role for the
aggregate markup in distorting the scale of the economy at a point in time. Instead, we
find the level of markups to have little to no bearing on the rate at which the economy
grows in the long run.

Table 9: Growth Rate Decomposition for Alternative Transfer Schedules

Contribution Before Baseline Level fix Dispersion fix

After Change After Change After Change

Incumbent drift 0.54% 1.02% +0.49% 0.51% -0.03% 1.06% +0.53%

Incumbent vol. 0.18% 0.19% +0.01% 0.18% -0.00% 0.19% +0.01%

Entry and exit 0.10% 0.84% +0.74% 0.09% -0.01% 0.89% +0.79%

Total 0.82% 2.05% +1.23% 0.78% -0.04% 2.15% +1.33%

Note: This table presents the contributions to the level and change (p.p.) of TFP growth under alternative
policy interventions. Specifically, the columns labeled “Baseline”, “Level fix” and “Dispersion fix” refer to
the transfers that rectify both, and either the level or dispersion in markups, respectively.

Conversely, the tax and subsidy schedule that eliminates markup dispersion while
leaving their average level unchanged achieves an increase in long-run TFP growth
that is even larger than that from the baseline intervention.33 The largest contributors
are, here again, the terms reflecting incumbents’ productivity drift and entry and exit.
Nonetheless, it is worth noting that this faster productivity growth is not necessarily

33This intervention is nearly budget-neutral. It raises revenue amounting to 0.6% of output, which is
rebated to the household.

41



indicative of an improvement in welfare. On the one hand, too few resources may be
directed towards production under this allocation, thus reducing aggregate output. On
the other hand, this scheme might strike a more optimal balance between rectifying
product market distortions and addressing other market failures.

As mentioned earlier, these market failures take the form of technological externalities
across firms. As entering firms draw their relative productivity from a transformation
of the incumbent distribution, the latter do not internalize that their R&D investments
benefit future cohorts of firms. Further, as emphasized in Lashkari (2023), since the
lower bound of the productivity support is endogenous, an unproductive firm may
choose to stay in business to extract ex-post rents, but in doing so, it “pollutes” the pool
from which entrants draw their relative productivity.

All else equal, these inefficiencies imply that the market would (1) allocate too few
resources to R&D and (2) harbor an inefficiently large density of small unproductive
firms. The “Dispersion fix” tax and subsidy scheme inadvertently addresses both of
these market failures, albeit imperfectly. In preserving the level of markups, production
labor demand remains low, thus “freeing up” resources for R&D. Further, this scheme
takes the form of a tax for the smallest firms, who initially charged below-average
markups. To induce these firms to increase their markup to the pre-policy average, their
output must be taxed. Since this tax is passed on through higher prices, it reduces the
demand they face and edges them out of the market, thereby improving the productivity
pool. Yet, without a comprehensive welfare analysis, it remains unclear which scheme
achieves the largest improvement in welfare.

5.5 Robustness

An important assumption entertained in the quantification of our model is to target an
aggregate markup of 30%. De Ridder et al. (2023) measure a sales-weighted harmonic
average markup of 10% and 50% using French firm-level revenue and quantity data,
respectively.34 To assess the implications of this assumption, Table 10 replicates Table
7 with a targeted aggregate markup of 10% or 50%.35 Structural parameters are re-
estimated under these alternative targets. With a lower target of 10%, the implications
of the intervention are more tempered. The increase in the long-run growth rate of TFP
is significantly muted at 29 basis points. However, we see a nontrivial contribution of 13
basis points from the faster productivity growth achieved by incumbent firms.

With a target of 50% for the aggregate markup, the repercussions of the intervention

34As a reference point, Aghion et al. (2023) entertain an aggregate markup of 50%.
35Appendix C.3 further replicates Tables 4, 5 and 6 for these cases.
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Table 10: Growth Rate Decomposition for Alternative Aggregate Markup Targets

Contribution M=1.1 M=1.5

Before After Change Before After Change

Incumbent drift 0.15% 0.28% +0.13% 0.83% 2.12% +1.29%

Incumbent vol. 0.33% 0.47% +0.14% 0.14% 0.15% +0.01%

Entry and exit 0.28% 0.30% +0.02% -0.20% 0.77% +0.97%

Total 0.76% 1.05% +0.29% 0.77% 3.03% +2.26%

Note: This table presents the contributions to the level and change of TFP growth under alternative
aggregate markup targets. Specifically, the columns labeled “M=1.1” and “M=1.5” respectively refer to
parameterizations that target a cost-weighted average markup of 1.1 and 1.5.

are magnified. TFP growth increases by 2.26 percentage points, with a considerably
larger contribution from incumbent firms’ productivity drift. Decomposing the change in
this term according to equation (13) reveals a larger contribution (46.1% of the total) from
a greater correlation between firm-level productivity drifts and their market expansion
responses. Meanwhile, the contribution of larger productivity drifts, holding fixed the
composition of firms, is slightly subdued relative to baseline (48.2% of the total).

5.6 Discussion

In this subsection, we delve into the nuances of our theoretical framework by exploring
a range of possible extensions and alternative assumptions. Two forthcoming extensions
are to (1) conduct a comprehensive welfare analysis incorporating transition dynamics
and (2) characterize the optimal allocation of resources. First, as emphasized in Atkeson,
Burstein and Chatzikonstantinou (2019), transition dynamics tend to be slow in models
of endogenous economic growth. Such inertia might curtail the intervention’s welfare
implications if the accelerated pace of productivity growth mostly materializes in the
distant future. Second, detailing the optimal allocation of resources will provide insight
into the efficiency properties of this intervention.
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Process vs. Product Innovation

In our framework, firms invest in R&D to achieve improvements in their process efficiency.
An alternative assumption is to consider product quality improvements as the objective
for those investments. We show in Appendix A.3 that when the quality and quantity
of a product are perfect substitutes, this alternative is isomorphic to our model. While
the assumption of perfect substitutability between quantity and quality is undoubtedly
stylized, the economic modeling of the latter lacks a cohesive consensus. Hence, further
study of product quality improvements under non-isoelastic demand systems presents
a promising frontier for exploration.

Production vs. Innovation Resource Substitution

Our analysis yields a perhaps unexpected result: a uniform subsidy that rectifies the
aggregate markup–while preserving the dispersion in markups–mildly diminishes the
long-run growth rate of TFP. It is worth noting that this result is partly attributable to
our theoretical choices. As posited in Section 3.1, labor can be seamlessly reallocated
between production and innovation. Consequently, by inducing firms to employ more
labor in production, a uniform output subsidy can potentially reduce the availability of
labor for R&D. This reveals that the degree of substitutability between production and
innovation resources determines the extent to which the aggregate markup can alter
economic growth.

To elucidate, consider an alternative economy wherein an elastic supply of ’skilled’
and ’unskilled’ labor can only be allocated to innovation and production, respectively.
Under these circumstances, an output subsidy would leave the availability of ’skilled’
labor unchanged, as it is non-transferable to production. A more contrasting alternative
is that of an economy in which the final sector (instead of intermediate firms) uses
labor and intermediate inputs to produce the final good. In this environment, rectifying
the level of markups would induce the final sector to reallocate expenditures toward
(initially marked-up) intermediates and away from production labor, thus freeing up
resources for R&D rather than restricting them. In that sense, we consider our choices to
be conservative.

Monopolistic vs. Oligopolistic Competition

Another assumption of our model is the tractable premise of monopolistic competition.
Notwithstanding, Edmond et al. (2023) find that the efficiency losses from markups
are greater under oligopolistic competition, through which they infer greater dispersion
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therein. It remains to be shown whether this conclusion extends to the dynamic costs of
markups, but one might conjecture that it could, based on the following argument. The
Klenow and Willis (2016) functional form makes two counterfactual predictions under
monopolistic competition. First, in order to accommodate a reasonable distribution of
markups, it requires unreasonably little heterogeneity in pass-throughs, which grates
against the evidence documented in Amiti et al. (2019). Second, the sharp concavity in
demand at lower prices appears empirically inconsistent when compared to the heavy
observed tails of firm-level employment or sales.

What are the implications of these counterfactual predictions for economic growth?
With little dispersion in pass-throughs prior to the intervention, the transition to marginal
cost pricing (complete pass-throughs for all firms) barely improves the reallocation of
demand towards the most productive firms. Further, the pronounced decline in the
elasticity of demand implies that lower prices are not met with substantially higher
demand. These two properties of this functional form limit the extent to which marginal
cost pricing can increase the correlation between firms’ productivity growth and their
resulting expansion responses. Amiti et al. (2019) argue that models of oligopolistic
competition can replicate the joint distribution of markups and pass-throughs more
closely. This suggests that the consequences of markups might be amplified under a
market structure that (1) aligns with lower pass-throughs for large firms and (2) obviates
the requirement for a steeply declining demand elasticity at lower prices.

Customer Acquisition

Neglecting the role of customer acquisition might also understate such consequences.
Afrouzi et al. (2023) find that in a model parallel to Edmond et al. (2023), considering
the endogenous accumulation of a customer base unveils greater dispersion in markups,
thereby intensifying the implied efficiency losses from markups.36 In addition, Einav,
Klenow, Levin and Murciano-Goroff (2021) document that, while new entrants accrue
lower total sales than incumbents, their average sales per customer are nearly equivalent.
Since a firm’s process efficiency is related to that intensive (rather than extensive) margin
of demand, these findings suggest that new entrants might be more productive than
inferred in models omitting a customer margin, such as ours. Hence, accounting for this
extensive margin of demand could amplify the role played by the selective displacement
of unsuccessful firms by more productive newcomers.

36These findings may extend to frictions in accumulating factors of production, such as in Bilal, Engbom,
Mongey and Violante (2021).
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Firm Ownership, Nonlinear Pricing, and Semi-Endogenous Growth

However, other forces not encompassed in our analysis–such as concentrated firm
ownership, nonlinear pricing, and semi-endogenous growth–might instead temper our
conclusions. Boar and Midrigan (2019) find that when firm ownership is concentrated,
tensions arise between concerns for efficiency and inequality. Whether these trade-offs
are mitigated or amplified in models of endogenous economic growth remains an open
question. When firms engage in second-degree price discrimination, as in Bornstein and
Peter (2023), their ability to appropriate a larger fraction of the consumer surplus might
narrow the gap between private and social incentives for innovation. The work of Jones
(1995) adds yet another layer of nuance. Should economic growth be intrinsically tied
to demographic dynamics, the acceleration in TFP growth we identified might only be
transient. Combining the insights from semi-endogenous growth theory with models of
firm-led technological change, such as those proposed by Peretto (1998), Dinopoulos
and Thompson (1998), Young (1998) and Howitt (1999), offers a promising route for
future exploration.

6 Conclusion

We studied the consequences of markups for long-run economic growth in a general
equilibrium model of firm-led endogenous technological change. In our model, firms
engage in monopolistic competition, charge heterogeneous markups, and their profit-
seeking investments in R&D propel economic growth.

Two economic insights have formed the basis of our argument in this paper. Since
ideas are nonrival, investments in R&D have increasing returns to scale. Yet, markups
distort the scale at which firms operate and, therefore, affect their incentives to invest in
R&D. In general equilibrium, however, markups also distort the aggregate demand for
labor, thereby affecting its availability for R&D.

To quantify our model, we estimated its parameters using French macroeconomic
and firm-level administrative data. We found that an intervention correcting the product
market distortions induced by markups raises productivity growth by 1.2 percentage
points in the long run. This accelerated growth results from an increase in aggregate
R&D employment, its reallocation towards firms with a broader market reach, and a
higher rate of churn from entry and exit.

We conducted two alternative exercises to elucidate these findings further. We first
explored a “constrained” intervention, which kept the aggregate allocation of labor
to innovation fixed, to determine whether the uptick in TFP growth is predominantly
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due to the allocation of additional resources to R&D or a reallocation of these resources
across firms. Our findings suggest that nearly 75% of the baseline acceleration in growth
can be attained by simply reallocating a fixed quantity of innovation labor from small,
unproductive firms to their larger, more productive competitors.

Our final counterfactual exercise disentangled the role of the aggregate markup from
that of markup dispersion. We found that rectifying the level of markups has a relatively
muted impact on long-run TFP growth, as firms bid up the cost of R&D investments via a
higher wage. In contrast, neutralizing the dispersion in markups achieves slightly faster
TFP growth than the baseline intervention. This exercise revealed that the dispersion in
markups, rather than their average level, is more detrimental to economic growth.

To conclude, we emphasize that heterogeneous markups serve as just one illustration
of a distortion that differentially affects firms’ production scale and, thus, their incentives
to improve their technology. Hsieh and Klenow (2009) document that such distortions
(e.g., size-dependent taxes and regulations, financial frictions, or political connections)
are plausibly large and pervasive, and Baqaee and Farhi (2019) show that input-output
linkages substantially amplify their consequences on allocative efficiency. In light of this,
one cannot help but surmise that the real world might be riddled with impediments to
long-run economic growth awaiting further study.
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A Theoretical Appendix

This section of the Appendix provides derivations, proofs and extensions for the results
presented in Section 3. Appendix A.1 provides derivations, Appendix A.2 provides
proofs and Appendix A.3 discusses extensions to our framework.

A.1 Derivations

A.1.1 Discretization

In some derivations and proofs presented in this appendix, working with a discrete-time
approximation of the model is convenient. As such, we follow the approach in Dixit and
Pindyck (1994) and consider two discrete spaces τ ∈ N ∪ {0} and j ∈ Z for time and
productivity, respectively. We define time intervals of length ∆ > 0 and productivity
intervals of length ∆z = σ

√
∆ such that t = τ∆ and z = j∆z. With these definitions, the

firm’s productivity diffusion process can be approximated by a random walk. That is,
between τ and τ + 1, the probability of going from j to j ± 1 is given by:

p+τ (γτ(j)) = [1 + γτ(j)
√

∆/σ]/2 and p−τ (γτ(j)) = [1 − γτ(j)
√

∆/σ]/2.

A.1.2 The Household’s Problem

Taking prices as given, the household’s problem is to choose its consumption and hours
worked to maximize lifetime utility subject to a flow budget constraint:

max
{Ct,Ht}t≥0

∫ ∞

0
e−ρt[ln(Ct)− v(Ht)]dt s.t. Ȧt = rt At + wtHt − Ct.

Reformulating the Household’s problem using the current-value Hamiltonian, we have:

Ht(Ct, Ht, At, νt) = ln(Ct)− v(Ht) + νt(rt At + wtHt − Ct)

where νt denotes the costate variable. The first-order conditions are:

∂Ht

∂Ct
= 1/Ct − νt = 0,

∂Ht

∂Ht
= −v′(Ht) + νtwt = 0,

∂Ht

∂At
= νtrt = νtρ − ν̇t
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together with the No-Ponzi and transversality conditions, which jointly imply:

lim
t→∞

e−
∫ t

0 rt′dt′ At = 0

Combining these equations, we obtain the usual intertemporal Euler equation and static
first-order condition:

Ċt

Ct
= rt − ρ and v′(Ht)Ct = wt.

A.1.3 The Final Sector’s Problem

Taking prices as given, the final sector’s problem is to choose its relative demand for
each variety to maximize profits in each period:

max
{ŷt(ẑ)}∞

ẑ=0

{
Pt − Mt

∫ ∞

0
pt(ẑ)ŷt(ẑ)dFt(ẑ)

}
Yt s.t. Mt

∫ ∞

0
Υ(ŷt(ẑ))dFt(ẑ) = 1.

Reformulating the final sector’s problem as a cost-minimization problem subject to the
Kimball (1995) aggregator constraint using the Lagrangian, we have:

Lt({ŷt(ẑ)}∞
ẑ=0, νt) = MtYt

∫ ∞

0
pt(ẑ)ŷt(ẑ)dFt(ẑ) + νt

(
Mt

∫ ∞

0
Υ(ŷt(ẑ))dFt(ẑ)− 1

)
where νt now denotes the Lagrange multiplier. The first-order conditions are:

pt(ẑ) = νtΥ
′(ŷt(ẑ))/Yt and Mt

∫ ∞

0
Υ(ŷt(ẑ))dFt(ẑ) = 1.

Since the final sector is perfectly competitive and makes no profit, we have:

Pt = Mt

∫ ∞

0
pt(ẑ)ŷt(ẑ)dFt(ẑ).

Substituting in the first-order conditions, we obtain a solution for νt:

νt = PtYtDt where Dt ≡
(

Mt

∫ ∞

0
Υ′(ŷt(ẑ))ŷt(ẑ)dFt(ẑ)

)−1

.

This delivers the following inverse demand functions:

pt(ẑ) = Υ′(ŷt(ẑ))PtDt.
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A.1.4 The Firm’s Static Problem

Firms engage in monopolistic competition in the product market but perfect competition
in the input markets. That is, a firm chooses the price at which to sell its variety as well
as its demand for physical capital and production labor to maximize profits in each
period. The firm takes as given the demand for its variety, the rental rate of capital rt,
the wage rate wt and any transfer Tt(ŷt(ẑ)), which delivers the following problem:

πt(ẑ) = max
pt(ẑ),kt(ẑ),lt(ẑ)

{pt(ẑ)yt(ẑ)− (rt + δ)kt(ẑ)− wtlt(ẑ) + Tt(ŷt(ẑ))} − wtcO

subject to the inverse demand function pt(ẑ) = Υ′(ŷt(ẑ))Dt. Let us first consider the
sub-problem of optimally choosing the demand for capital and labor, which can be
reformulated as a cost-minimization problem. Using the Lagrangian, we have:

Lt(kt(ẑ), lt(ẑ), νt(ẑ)) = (rt + δ)kt(ẑ) + wtlt(ẑ) + νt(ẑ)[yt(ẑ)− exp(ẑ + zt)kt(ẑ)αlt(ẑ)1−α]

where νt(ẑ) denotes the Lagrange multiplier. The first-order conditions are:

kt(ẑ) =
ανt(ẑ)yt(ẑ)

rt + δ
,

lt(ẑ) =
(1 − α)νt(ẑ)yt(ẑ)

wt
,

yt(ẑ) = exp(ẑ + zt)kt(ẑ)αlt(ẑ)1−α.

Solving for the Lagrange multiplier, we have:

νt(ẑ) = ςt exp(−ẑ − zt) where ςt ≡
(

rt + δ

α

)α ( wt

1 − α

)1−α

.

Therefore, we can rewrite the firm’s static problem as:

πt(ẑ) = max
pt(ẑ)

{[pt(ẑ)− ςt exp(−ẑ − zt)]ŷt(ẑ)Yt + Tt(ŷt(ẑ))} − wtcO

s.t. pt(ẑ) = Υ′(ŷt(ẑ))Dt.

Reformulating it as a choice of ŷt(ẑ) given the inverse demand function pt(ẑ), we have:

πt(ẑ) = max
ŷt(ẑ)

{[Υ′(ŷt(ẑ))Dt − ςt exp(−ẑ − zt)]ŷt(ẑ)Yt + Tt(ŷt(ẑ))} − wtcO.
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The first-order condition is:

[Υ′′(ŷt(ẑ))ŷt(ẑ) +Υ′(ŷt(ẑ))]Dt + T′
t (ŷt(ẑ))/Yt = ςt exp(−ẑ − zt).

With Tt(ŷt(ẑ)) = 0 for all ẑ, we can rearrange this expression as:

pt(ẑ) =
µt(ẑ)ςt

exp(ẑ + zt)
where µt(ẑ) ≡

ϑt(ẑ)
ϑt(ẑ)− 1

and where ϑt(ẑ) denotes the price elasticity of demand:

ϑt(ẑ) ≡ − Υ′(ŷt(ẑ))
Υ′′(ŷt(ẑ))ŷt(ẑ)

∈ (1, ∞).

Substituting the monopoly pricing function in the profit function, we have:

πt(ẑ) =
pt(ẑ)ŷt(ẑ)Yt

ϑt(ẑ)
− wtcO.

Denoting the firm’s price relative to the choke price as p̂t(ẑ) ≡ pt(ẑ)/pt, we can rewrite:

p̂(ẑ) =
µ(ẑ)ςt/pt

exp(ẑ + zt)
and πt(ẑ) =

p̂(ẑ)ŷ(ẑ)ptYt

ϑ(ẑ)
− wtcO.

With the transfers from equation (12), the first-order condition is instead:

p̂(ẑ) =
ςt/pt

exp(ẑ + zt)

such that all firms price at marginal cost. This implies that profits are simply given by:

πt(ẑ) = [Υ(ŷ(ẑ))−Υ′(ŷ(ẑ))ŷ(ẑ)]YtDt − wtcO.

A.1.5 The Firm’s Dynamic Problem

Given the above static profit function and taking the wage rate as given, firms control
the drift of their productivity and choose an exit stopping time τ:

Vt(z) = max
τ,{γs}s≥t

Ez

{∫ t+τ

t
e−
∫ s

t (rt′+χ)dt′ [πs(zs)− wsi(γs, zs − zt)]ds
}

where Ez denotes the expectation operator with respect to the diffusion process {zs}s≥t

when its initial value is zt = z. With the definitions presented in Appendix A.1.1, we
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consider the discrete-time recursive formulation of the firm’s dynamic problem:

Vτ(j) = πτ(j)∆ + max
γ

{(1 − χ∆)(1 − rτ∆)[p+τ (γ)max{Vτ+i(j + 1), 0}

+ p−τ (γ)max{Vτ+1(j − 1), 0}]− wτi(γ, j∆z − zτ)∆}.

At a productivity state j such that Vτ+1(j − 1) > 0, the firm’s value function satisfies:

Vτ(j) = πτ(j)∆ + max
γ

{(1 − χ∆)(1 − rτ∆)[p+τ (γ)Vτ+1(j + 1)

+ p−τ (γ)Vτ+1(j − 1)]− wτi(γ, j∆z − zτ)∆}.

Up to a second-order approximation of Vτ+1(j ± 1) around Vτ(j) = Vt(z), we find:

Vt(z) = πt(z)∆ + max
γ

{(1 − χ∆)(1 − rt∆)[Vt(z) + V̇t(z)∆ + V̈t(z)∆2/2 + σ2V′′
t (z)∆/2

+ (2p+t (γ)− 1)V′
t (z)σ

√
∆ + o(∆)]− wti(γ, z − zτ)∆}

where a single and double dot above a function respectively denote its first and second
partial derivatives with respect to time. Subtracting (1 − χ∆)(1 − rt∆)Vt(z) from both
sides and substituting in the expression for p+t (γ), we find:

(rt∆ + χ∆ + rtχ∆2)Vt(z) = πt(z)∆ + max
γ

{(1 − χ∆)(1 − rt∆)[V̇t(z)∆ + V̈t(z)∆2/2

+ γV′
t (z)∆ + V′′

t (z)σ
2∆/2 + o(∆)]− wti(γ, z − zt)∆}.

If we divide both sides of this equation by ∆ and then take the limit as ∆ → 0, we obtain
the following HJBE:

(rt + χ)Vt(z) = πt(z) + max
γ

{γV′
t (z)− wti(γ, z − zt)}+ σ2V′′

t (z)/2 + V̇t(z).

With the change of variable ẑ ≡ z − zt where żt = gt, we can rewrite:

(rt + χ)Vt(ẑ) = πt(ẑ) + max
γ

{(γ − gt)V′
t (ẑ)− wti(γ, ẑ)}+ σ2V′′

t (ẑ)/2 + V̇t(ẑ).

Let us examine the case where the firm’s productivity nears the exit threshold. We
have assumed that the value of exiting the market is equal to zero, which implies that
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Vt(0) = 0. Evaluating the firm’s value function at the exit threshold then delivers:

0 = πt(0)∆

+ max
γ

{(1 − χ∆)(1 − rt∆)[p+t (γ)max{V′
t (0)σ

√
∆ + V′′

t (0)σ
2∆/2 + o(∆), 0}

+ p−t (γ)max{−V′
t (0)σ

√
∆ + V′′

t (0)σ
2∆/2 + o(∆), 0}]− wti(γ, z − zt)∆}.

If we divide both sides by
√

∆ and then take the limit as ∆ → 0, we obtain:

max{V′
t (0), 0}+ max{−V′

t (0), 0} = 0,

which implies the smooth pasting condition V′
t (0) = 0. Therefore, as in Stokey (2009),

the optimality conditions of the firm’s dynamic problem are the value matching, smooth
pasting, and first-order conditions:

Vt(0) = 0, V′
t (0) = 0 and V′

t (ẑ) = wt ×
∂i(γ, ẑ)

∂γ

together with the “no bubble” condition:

lim
ẑ→∞

Vt(ẑ) = lim
ẑ→∞

max
{γs}s≥t

Eẑ

{∫ ∞

t
e−
∫ s

t (rt′+χ)dt′ [πs(ẑs)− wsi(γs, ẑs)]ds
}

.

A.1.6 The Kolmogorov Forward Equation

Here again, we will derive the KFE from its discrete-time analog. But in addition, we
also keep track of a firm’s age a through the definition a = i∆ for i ∈ N ∪ {0}. Denoting
the measure of firms with productivity j and age i at time τ by mτ(j, i), we have the
following law of motion for all i > 0:

mτ+1(j, i) = (1 − χ∆)[mτ(j + 1, i − 1)p−τ (γτ(j + 1)) + mτ(j − 1, i − 1)p+τ (γτ(j − 1))]

together with the “boundary condition” mτ(j, 0) = Et f E
τ (j) for all j. Taking a second-

order approximation of mτ(j ± 1, i − 1) around mτ(j, i) = mt(z, a), we find:

mτ(j ± 1, i − 1) = mt(z, a)± ∂zmt(z, a)∆z − ∂amt(z, a)∆

+ [∂zzmt(z)∆2
z + ∂aamt(z, a)∆2 + ∂zamt(z, a)∆z∆]/2 + o(∆).

Taking a second-order approximation of γτ(j ± 1) around γτ(j) = γt(z), we find:

γτ(j ± 1) = γt(z)± ∂zγt(z)∆z + ∂zzγt(z)∆2
z/2 + o(∆).
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Hence, we can rewrite:

mτ(j + 1, i − 1)p−τ (γτ(j + 1))

+ mτ(j − 1, i − 1)p+τ (γτ(j − 1)) = [1 − ∂zγt(z)∆]{mt(z, a)− ∂amt(z, a)∆

+ [∂zzmt(z)∆2
z + ∂aamt(z, a)∆2 + ∂zamt(z, a)∆z∆]/2}+ o(∆)

− ∂zmt(z, a)∆[γt(z) + ∂zzmt(z, a)∆2
z/2 + o(∆)].

Substituting this in the law of motion for mτ(j, i) and taking the limit as ∆ → 0:

ṁt(z, a) = −∂z[γt(z)mt(z, a)]− ∂amt(z, a) + (σ2/2)∂zzmt(z, a)− χmt(z, a).

With the change of variable ẑ ≡ z − zt where żt = gt, we can rewrite:

ṁt(ẑ, a) = −∂ẑ[(γt(ẑ)− gt)mt(ẑ, a)]− ∂amt(ẑ, a) + (σ2/2)∂ẑẑmt(ẑ, a)− χmt(ẑ, a).

The boundary conditions in terms of relative productivity are:

lim
ẑ→0

mt(ẑ, a) = lim
ẑ→∞

mt(ẑ, a) = 0 ∀â.

The boundary conditions in terms of age are:

lim
a→0

mt(ẑ, a) = Et f E
t (ẑ) and lim

a→∞
mt(ẑ, a) = 0 ∀ẑ.

The total measure of firms is defined as:

Mt ≡
∫ ∞

0

∫ ∞

0
mt(ẑ, a)dadẑ.

Differentiating this equation with respect to time and substituting in the KFE, we find
the law of motion for the measure of firms:

Ṁt = [et − χ − (σ2/2) lim
ẑ→0

f ′t (ẑ)]Mt where et ≡ Et/Mt

and where the joint and marginal probability density functions of relative productivity
and age are defined as:

ft(ẑ, a) ≡ mt(ẑ, a)/Mt,

ft(ẑ) ≡ lim
a→∞

mt(ẑ, a)/Mt,

ft(a) ≡ lim
ẑ→∞

mt(ẑ, a)/Mt.
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Similarly, the joint and marginal cumulative density functions of relative productivity
and age are defined as:

Ft(ẑ, a) ≡ ∫ ẑ
0 ∫ a

0 ft(ẑ′, a′)da′dẑ′,

Ft(ẑ) ≡ ∫ ẑ
0 ft(ẑ′)dẑ′,

Ft(a) ≡ ∫ a
0 ft(a′)da′.

A.1.7 Aggregation

By the definition of the final good’s price index, we have:

1 = Mt

∫ ∞

0
pt(ẑ)ŷt(ẑ)dFt(ẑ).

Substituting in the monopoly pricing condition, we obtain:

1 = ςtMt

∫ ∞

0
µt(ẑ)ŷt(ẑ) exp(−ẑ − zt)dFt(ẑ).

Multiplying both sides by the definition of TFP Zt:

Zt = ςtMt where Mt ≡
∫ ∞

0 µt(ẑ)ŷt(ẑ) exp(−ẑ)dFt(ẑ)∫ ∞
0 ŷt(ẑ) exp(−ẑ)dFt(ẑ)

.

The definitions of aggregate physical capital and production labor demand are:

Kt = Mt

∫ ∞

0
kt(ẑ)dFt(ẑ) and Lt = Mt

∫ ∞

0
lt(ẑ)dFt(ẑ).

Substituting in the firm-level demand functions for physical capital and production
labor derived in Appendix A.1.4, we obtain:

Kt =
αςtYt

(rt + δ)Zt
=

αYt

(rt + δ)Mt
and Lt =

(1 − α)ςtYt

wtZt
=

(1 − α)Yt

wtMt
.

Solving for aggregate output delivers:

Yt = ZtKα
t L1−α

t .

Under the transfers of equation (12), we simply have that Mt = 1.
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A.1.8 The Optimal Allocation of Resources

In this section, we characterize the optimal allocation of resources. To do so, we consider
the problem of a benevolent social planner maximizing social welfare subject to the
economy’s resource constraints and the law of motion for the density of firms. More
specifically, this planner chooses:

{{kt(z), lt(z), γt(z)}∞
z=zt

, zt, Ct, Ht, Et}∞
t=0

to maximize the following objective:

U0 =
∫ ∞

0
e−ρt[ln(Ct)− v(Ht)]dt

subject to the following constraints for all t and z:

Kt ≥ ∫∞
zt

kt(z)mt(z)dz,

Ht ≥ ∫∞
zt
[lt(z) + i(γt(z), z − zt) + cO]mt(z)dz + cEEt,

Yt ≥ K̇t + δKt + Ct,

ṁt(z) = −∂z[γt(z)mt(z)] + (σ2/2)m′′
t (z) + Et f E

t (z)− χmt(z)

where mt(z) denotes the density of firms with productivity equal to z and f E
t (z) denotes

the probability density function from which entrants draw their productivity:37

f E
t (z) = T′[1 − Ft(z)] ft(z).

In addition, aggregate output Yt is implicitly defined as:∫ ∞

zt

Υ(yt(z)/Yt)mt(z)dz = 1 where yt(z) = exp(z)kt(z)αlt(z)1−α.

As is, this problem is challenging because the density function of productivity mt(z) is
part of the aggregate state of the economy, and it is an infinite-dimensional object. To
circumvent this challenge, we follow the approach in Lashkari (2023) and discretize the
time dimension of the problem. With the discretization scheme presented in Appendix
A.1, we can restate the planner’s problem as controlling:

uτ = {{kτ(j), lτ(j), γτ(j)}∞
j=j

τ
, j

τ
, Cτ, Hτ, Eτ}.

37With a slight abuse of notation, we use the same notation to identify the (probability) density function
of both absolute and relative productivity.
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to maximize the following objective:

U0 =
∞

∑
τ=0

e−ρτ∆[ln(Cτ)− v(Hτ)]∆

subject to the following constraints for all τ ∈ N ∪ {0} and j ≥ j
τ
∈ Z:

Kτ ≥ ∑∞
j=j

τ

kτ(j)mτ(j)∆z,

Hτ ≥ ∑∞
j=j

τ

[lτ(j) + i(γτ(j), (j − j
τ
)∆z) + cO]mτ(j)∆z + cEEτ,

Kτ+1 ≤ (Yτ − Cτ)∆ + (1 − δ∆)Kτ,

mτ+1(j) = (1 − χ∆)[mτ(j + 1)p−τ (γτ(j + 1)) + mτ(j − 1)p+τ (γτ(j − 1))] + Eτ f E
τ (j)∆.

Collecting the state variables in the vector xτ = {Kτ, {mτ(j)}∞
j=j

τ
}, we can express the

dynamic and static constraints in vector form as:

xτ+1 = fD
τ (uτ, xτ) and fS

τ(uτ, xτ) = 0, ∀τ ∈ N ∪ {0}.

We denote the Lagrange multipliers for these dynamic and static constraints by:

νD
τ+1 = {1, {νm

τ+1(j)∆z}∞
j=j

τ+1
} and νS

τ = {νK
τ , νH

τ }, ∀τ ∈ N ∪ {0}.

Here again, aggregate output Yτ is implicitly defined as:

∞

∑
j=j

τ

Υ(yτ(j)/Yτ)mτ(j)∆z = 1 where yτ(j) = exp(j∆z)kτ(j)αlτ(j)1−α.

Hence, we can define the planner’s current-value Hamiltonian as:

Hτ(uτ, xτ, νD
τ , νS

τ ) = [ln(Cτ)− v(Hτ)]∆ + ντ+1νD
τ+1

⊤
fD

t (uτ, xτ) + ∆ντ+1νS
τ
⊤

fS
t (uτ, xτ).

The first-order conditions with respect to kτ(j) and lτ(j) are given by:

∆ντ+1 ×
∂Yτ

∂yτ(j)
× ∂yτ(j)

∂kτ(j)
− ∆νK

τ ντ+1mτ(j)∆z = 0,

∆ντ+1 ×
∂Yτ

∂yτ(j)
× ∂yτ(j)

∂lτ(j)
− ∆νH

τ ντ+1mτ(j)∆z = 0.
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To obtain an expression for ∂Yτ
∂yτ(j) , we can differentiate the implicit definition of aggregate

output and use the (discrete) definition of the demand index to find:

∂Yτ

∂yτ(j)
= Υ′(yτ(j)/Yτ)Dτmτ(j)∆z.

Substituting this in the previous two equations and simplifying, we find expressions for
the optimal allocations of production labor and physical capital across firms:

kτ(j) = αΥ′(yτ(j)/Yτ)Dτyτ(j)/νK
τ ,

lτ(j) = (1 − α)Υ′(yτ(j)/Yτ)Dτyτ(j)/νH
τ .

The first-order conditions with respect to γτ(j) imply:

i′(γτ(j), j∆z) = (1 − χ∆)[νm
τ+1(j + 1)− νm

τ+1(j − 1)]/(2∆zνH
τ ).

The first-order conditions with respect to Cτ, Hτ, Eτ and Kτ imply:

Cτ = ν−1
τ+1,

Hτ = v′−1
(νH

τ ντ+1),

νH
τ cE = ∑∞

j=j
τ

νm
τ+1(j) f E

τ (j)∆z,

eρ∆ντ = ντ+1[(ν
K
τ − δ)∆ + 1].

Finally, the first-order conditions with respect to mτ(j) for νm
τ+1(j − 1) > 0 imply:

eρ∆νm
τ (j)ντ/(∆ντ+1) = ∆−1

z × ∂Yτ

∂mτ(j)
− νK

τ kτ(j)− νH
τ [lτ(j) + i(γτ(j), (j − j

τ
)∆z) + cO]

+ (1 − χ∆)[νm
τ+1(j + 1)p+τ (γτ(j)) + νm

τ+1(j − 1)p−τ (γτ(j))]/∆

+ Eτ ∑∞
j′=j

τ

νm
τ+1(j′)× ∂ f E

τ (j′)
∂mτ(j)

.

Once again, to obtain an expression for ∂Yτ
∂mτ(j) , we can differentiate the implicit definition

of aggregate output to find:

∂Yτ

∂mτ(j)
= Υ(yτ(j)/Yτ)YτDτ∆z.
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To obtain an expression for ∂ f E
τ (j′)

∂mτ(j) , let us first state the discrete definition of f E
τ (j′):

f E
τ (j′) = T′[1 − M−1

τ ∑j′

k=j
τ

mτ(k)∆z]mτ(j′)M−1
τ where Mτ = ∑∞

k=j
τ

mτ(k)∆z.

Hence, we find that:

∂ f E
τ (j′)

∂mτ(j)
= T′′[1 − Fτ(j′)][Fτ(j′)− 1{j′≥j}] fτ(j′)M−1

τ ∆z

+ T′[1 − Fτ(j′)][1{j′=j} − fτ(j′)∆z]M−1
τ .

Substituting these results in the first-order conditions for mτ(j), we have:

(νK
τ − δ + 1/∆)νm

τ (j) = [Υ(ŷτ(j))−Υ′(ŷτ(j))ŷτ(j)]YτDτ − νH
τ [i(γτ(j), (j − j

τ
)∆z) + cO]

+ (1 − χ∆)[νm
τ+1(j + 1)p+τ (γτ(j)) + νm

τ+1(j − 1)p−τ (γτ(j))]/∆

+ eτ ∑∞
j′=j

τ

νm
τ+1(j′)T′′[1 − Fτ(j′)]Fτ(j′) fτ(j′)∆z

− eτ ∑∞
j′=j νm

τ+1(j′)T′′[1 − Fτ(j′)] fτ(j′)∆z

+ eτ[ν
m
τ+1(j) f E

τ (j)/ fτ(j)− νH
τ cE].

To obtain an expression for νK
τ , we can use the market clearing condition for physical

capital, from which we find:

νK
τ = αYτ/Kτ.

Similarly, defining Lτ as aggregate production labor, we find that:

νH
τ = (1 − α)Yτ/Lτ.

Substituting the optimality conditions for production labor and physical capital in the
firm’s production function and integrating over all firms, we also find that:

Yτ = ZτKα
τ L1−α

τ where
(

∑∞
j=j

τ

ŷτ(j) exp(−j∆z)mτ(j)∆z

)−1

.

From this point on, we take the limit of the previous equations as ∆ → 0. Let us begin
with the first-order conditions and law of motion for Kτ, from which we find:

Ċt = (αYt/Kt − δ − ρ)Ct and K̇t = Yt − δKt − Ct.
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Let us now define the firm’s social value function Vt(z) ≡ νm
τ (j). We can take a second-

order approximation of νm
τ+1(j ± 1) around z and t to find:

νm
τ+1(j ± 1) = Vt(z)± V′

t (z)∆z + V̇t(z)∆ + [V′′
t (z)∆

2
z + V̈t(z)∆2 ± V̇′

t (z)∆z∆]/2 + o(∆).

Hence, we can rewrite:

νm
τ+1(j + 1)− νm

τ+1(j − 1) = 2V′
t (z)∆z + V̇′

t (z)∆z∆ + o(∆).

Substituting this in the optimality condition for the controlled drift γt(z) ≡ γτ(j) and
taking the limit as ∆ → 0:

i′(γt(z), z − zt) = V′
t (z)/νH

t .

Similarly, we can rewrite:

νm
τ+1(j − 1)p−τ (γτ(j)) + νm

τ+1(j + 1)p+τ (γτ(j)) = Vt(z) + V̇t(z)∆

+ [V′′
t (z)σ

2∆ + V̈t(z)∆2]/2 + o(∆)

+ [V′
t (z)∆ + V̇′

t (z)∆
2/2 + o(∆)/(2σ)]γt(z).

Substituting this in the first-order condition for mτ(j) and taking the limit as ∆ → 0:

(νK
t − δ + χ)Vt(z) = [Υ(ŷt(z))−Υ′(ŷt(z))ŷt(z)]YtDt − νH

t [i(γt(z), z − zt) + cO]

+ γt(z)V′
t (z) + (σ2/2)V′′

t (z) + V̇t(z)

+ et ∫∞
zt

Vt(x)T′′[1 − Ft(x)]Ft(x)dFt(x)

− et ∫∞
z Vt(x)T′′[1 − Ft(x)]dFt(x)

+ et[Vt(z) f E
t (z)/ ft(z)− νH

t cE].

Integrating by parts and rearranging, we can rewrite:

(νK
t − δ + χ)Vt(z) = [Υ(ŷt(z))−Υ′(ŷt(z))ŷt(z)]YtDt − νH

t [i(γt(z), z − zt) + cO]

+ γt(z)V′
t (z) + (σ2/2)V′′

t (z) + V̇t(z)

+ et ∫ z
zt

V′
t (x)Ft(x) ft(x)−1dFE

t (x)

− et ∫∞
z V′

t (x)[1 − Ft(x)] ft(x)−1dFE
t (x).

The remaining optimality conditions are given by:

Ht = v′−1
(νH

t /Ct) and νH
t cE =

∫ ∞

zt

Vt(z)dFE
t (z)
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together with the value matching and smooth pasting conditions, which determine the
socially optimal exit threshold zt:

Vt(zt) = V′
t (zt) = 0.

Here, since firms have no scrap value, it must be that the optimal social value of a firm
that exits is equal to zero. Otherwise, the planner would either increase or decrease the
exit threshold to eliminate firms with a negative social value or take in those with a
positive one. The smooth pasting condition for the firm’s social value can be derived
as it was derived for the firm’s private value in Appendix A.1.5. Let us now define the
socially optimal productivity density function mt(z) ≡ mτ(j). We can take a second-
order approximation of mτ(j ± 1) around z to find:

mτ(j ± 1) = mt(z)± m′
t(z)∆z + m′′

t (z)∆
2
z/2 + o(∆).

Similarly, we can take a second-order approximation of γτ(j ± 1) around z to find:

γτ(j ± 1) = γt(z)± γ′
t(z)∆z + γ′′

t (z)∆
2
z/2 + o(∆).

Substituting these in the law of motion for mτ(j) and taking the limit as ∆ → 0:

ṁt(z) = −∂z[γt(z)mt(z)] + (σ2/2)m′′
t (z) + Et f E

t (z)− χmt(z).

Integrating over all firms, we find:

Ṁt = [et − χ − (σ2/2) f ′t (zt)]Mt.

Decentralizing the Optimal Allocation of Resources

To decentralize the optimal allocation of resources, a government may use two firm-
specific fiscal instruments: production and overhead labor taxes and subsidies. The
optimal relative quantity produced by the firm is given by:

ŷt(ẑ) = Υ′−1
[exp(−ẑ − zt)ZtD−1

t ].

We want to solve for the transfer schedule Tt(ŷt(ẑ)) that induces each firm to produce at
that optimal level by maximizing profits:

πt(ẑ) = max
ŷt(ẑ)

{[Υ′(ŷt(ẑ))Dt − ςt exp(−ẑ − zt)]ŷt(ẑ)Yt + Tt(ŷt(ẑ))} − wtcO.
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The private first-order condition of this problem is:

[Υ′′(ŷt(ẑ))ŷt(ẑ) +Υ′(ŷt(ẑ))]Dt + T′
t (ŷt(ẑ))/Yt = ςt exp(−ẑ − zt).

Substituting in the optimal level of production, we find:

T′
t (ŷt(ẑ)) = −Υ′′(ŷt(ẑ))ŷt(ẑ)YtDt.

This is an ordinary differential equation, which can be integrated by parts with the initial
condition Tt(0) = 0:

Tt(ŷt(ẑ)) = −YtDt

∫
Υ′′(ŷ′)ŷ′dŷ′ + C0 = [Υ(ŷt(ẑ))−Υ′(ŷt(ẑ))ŷt(ẑ)]YtDt.

Here, C0 is the constant of integration, equal to zero given the initial condition. Then, for
the firm’s social and value functions to coincide, the overhead labor expenditures of a
firm with relative productivity ẑ must be “taxed” at rate:

τO
t (ẑ) = et[∫∞

ẑ V′
t (x)[1 − Ft(x)] ft(x)−1dFE

t (x)− ∫ ẑ
0 V′

t (x)Ft(x) ft(x)−1dFE
t (x)]/(wtcO).

With these instruments, it is straightforward to show that the decentralized equilibrium
allocation must coincide with the optimal allocation of resources.

A.1.9 Alternative Transfer Schedules

In this subsection, we derive the transfers presented in Section 5.4. Let us first rewrite
the firm’s static problem of choosing a scale at which to produce in order to maximize
profits given a demand schedule:

πt(ẑ) = max
ŷt(ẑ)

{[Υ′(ŷt(ẑ))Dt − ςt exp(−ẑ − zt)]ŷt(ẑ)Yt + Tt(ŷt(ẑ))} − wtcO.

The first-order condition of this problem is:

[Υ′′(ŷt(ẑ))ŷt(ẑ) +Υ′(ŷt(ẑ))]Dt + T′
t (ŷt(ẑ))/Yt = ςt exp(−ẑ − zt).

Let us now momentarily abandon the ẑ notation for clarity. If the transfers are intended
to induce firms to charge a markup of Mt above marginal cost, we can substitute the
constraint Υ′(ŷ)Dt = Mtςt exp(−ẑ − zt) in the first-order condition to find:

T′
t (ŷ) = [(M−1

t − 1)Υ′(ŷ)−Υ′′(ŷ)ŷ]YtDt.
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Integrating by parts with the initial condition Tt(0) = 0, we find:

Tt(ŷ) = [M−1
t Υ(ŷ)−Υ′(ŷ)ŷ]YtDt.

If the transfers are instead intended to induce firms to charge a markup of µ(ŷ)/Mt

above marginal cost, we substitute the constraint Υ′(ŷ)Dt = µ(ŷ)ςt exp(−ẑ − zt)/Mt

in the first-order condition to find:38

T′
t (ŷ) = (Mt − 1)[Υ′(ŷ) +Υ′′(ŷ)ŷ]YtDt.

Integrating by parts with the same initial condition, we find:

Tt(ŷ) = (Mt − 1)Υ′(ŷ)ŷYtDt.

A.1.10 Relative Prices and Demand Under Klenow and Willis (2016)

From the final sector’s problem and the firm’s static problem, we have the following
relative demand function and monopoly pricing condition for varieties:

ŷt(ẑ) = Υ′−1
[pt(ẑ)/Dt] and pt(ẑ) =

µt(ẑ)ςt

exp(ẑ + zt)

where we have the following two definitions:

µt(ẑ) ≡
ϑt(ẑ)

ϑt(ẑ)− 1
and ϑt(ẑ) ≡ − Υ′(ŷt(ẑ))

Υ′′(ŷt(ẑ))ŷt(ẑ)
.

Denoting the choke price by pt ≡ Υ′(0)Dt, we can define a variety’s relative price as
p̂t(ẑ) ≡ pt(ẑ)/pt. This allows us to rewrite the relative demand function as:

ŷ( p̂) = Υ′−1
[ p̂Υ′(0)]

which is now a stationary function of the corresponding variety’s relative price. Using
the Klenow and Willis (2016) specification of the Kimball (1995) aggregator, we can
rewrite the monopoly pricing condition (relative to the choke price) as:

p̂t(ẑ) =
ςt/pt

[1 + (ϵ/θ) ln( p̂t(ẑ))] exp(ẑ + zt)

38Here, µ(ŷ) = Υ′(ŷ)/[Υ′(ŷ) +Υ′′(ŷ)ŷ].
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Note that we can rearrange this equation to obtain:

exp{(θ/ϵ)[ςt[ p̂t(ẑ)pt exp(ẑ + zt)]
−1 − 1]} p̂t(ẑ)−1 = 1

Multiplying both sides by (θ/ϵ) exp(θ/ϵ − ẑ − zt)ςt/pt, we have:

W−1{(θ/ϵ)ςt[ p̂t(ẑ)pt exp(ẑ + zt)]
−1} = (θ/ϵ) exp(θ/ϵ − ẑ − zt)ςt/pt

where W is the Lambert W-function defined by the inverse mapping W−1(x) = xex.
Finally, solving for p̂t(ẑ) delivers:

p̂t(ẑ) =
(θ/ϵ) exp(−ẑ − zt)ςt/pt

W[(θ/ϵ) exp(θ/ϵ − ẑ − zt)ςt/pt]
.

The Lambert W-function has two useful properties:

1. W(x) > 0 for all x > 0 and limx→0 W(x) = 0.

2. W ′(x) = [x + eW(x)]−1 for all x > 0 and limx→0 W ′(x) = 1.

We can use those properties to study the limiting behavior of a variety’s relative price
and demand for the most productive firms:

Proposition 6. At any given point in time, a variety’s relative price and demand asymptote to
constants as ẑ → ∞:

lim
ẑ→∞

p̂t(ẑ) = exp(−θ/ϵ) and lim
ẑ→∞

ŷ(ẑ) = θθ/ϵ.

Let us now consider the transfer schedule of equation (14):

Tt(ŷ) = [τ0Υ(ŷ) + τ1Υ
′(ŷ)ŷ]YtDt.

In particular, we will explore the three cases derived in the previous subsection of
this appendix: (τ0, τ1) ∈ {(1,−1), (0,Mt − 1), (M−1

t ,−1)}. In the first case, the firm’s
optimally chosen relative price is:

p̂t(ẑ) =
ςt/pt

exp(ẑ + zt)

which asymptotes to zero as ẑ → ∞. Therefore, the firm’s relative demand asymptotes
to infinity as ẑ → ∞. However, firm-level profits remain finite at any given point in time
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as ẑ → ∞. Indeed, we have that:

lim
ẑ→∞

πt(ẑ) =
[

1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1Γ
(

θ

ϵ
,

1
ϵ

)]
YtDt − wtcO.

In the second case, the firm’s optimally chosen relative price is:

p̂t(ẑ) =
µ(ẑ)ςt/pt

Mt exp(ẑ + zt)
.

With the same derivation as above, we can express that relative price function as:

p̂t(ẑ) =
(θ/ϵ) exp(−ẑ − zt)ςt/(ptMt)

W[(θ/ϵ) exp(θ/ϵ − ẑ − zt)ςt/(ptMt)]

which holds the same asymptotic properties as in Proposition 6. In the third case, the
firm’s optimally chosen relative price is:

p̂t(ẑ) =
Mtςt/pt

exp(ẑ + zt)

which asymptotes to zero as ẑ → ∞. Therefore, the firm’s relative demand asymptotes
to infinity as ẑ → ∞. However, firm-level profits remain finite at any given point in time
as ẑ → ∞. Indeed, we have that:

lim
ẑ→∞

πt(ẑ) =
[

1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1Γ
(

θ

ϵ
,

1
ϵ

)]
YtDt/Mt − wtcO.

A.1.11 Computing a Balanced Growth Path Equilibrium Allocation

Consider a balanced growth path equilibrium allocation as defined in Definition 2
with initial condition z0 = 0. Using the household’s Euler equation together with the
restriction that the value of a firm must grow at the same rate as aggregate consumption,
we have the following expression for the firm’s HJBE in the continuation region:

(ρ + χ)Vt(ẑ) = πt(ẑ) + max
γ

{(γ − g)V′
t (ẑ)− wti(γ, ẑ)}+ σ2V′′

t (ẑ)/2.

Here, g still denotes the instantaneous growth rate of TFP, which is constant on a
balanced growth path. Profits and the wage rate both grow at constant rate g/(1 − α)

such that we can define the stationary function V(ẑ) ≡ Vt(ẑ) exp[−gt/(1 − α)] and
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rewrite the firm’s HJBE as:

(ρ + χ)V(ẑ) = π0(ẑ) + max
γ

{(γ − g)V′(ẑ)− w0i(γ, ẑ)}+ σ2V′′(ẑ)/2

where X0 denotes the detrended value of a variable Xt that grows at a constant rate on a
balanced growth path. As in Appendix A.1.5, the firm’s dynamic problem delivers the
value matching, smooth pasting and first-order conditions:

V(0) = 0, V′(0) = 0 and γ(ẑ) =
[

V′(ẑ)
w0 exp(cI + (1 + ζ)ẑ)

] 1
ζ

.

Substituting this first-order condition in the firm’s stationary HJBE, we obtain a second-
order nonlinear ordinary differential equation:

(ρ + χ)V(ẑ) = π0(ẑ) +
ζγ(ẑ)V′(ẑ)

1 + ζ
− gV′(ẑ) +

σ2V′′(ẑ)
2

in which the stationary profit function is given by:

π0(ẑ) =

 p̂(ẑ)ŷ(ẑ)1+ϵ/θΥ′(0)Y0D/θ − w0cO Pre-policy,

[Υ(ŷ(ẑ))−Υ′(ŷ(ẑ))ŷ(ẑ)]Y0D − w0cO Post-policy,

and the relative demand and relative price functions are in turn given by:

p̂(ẑ) =


(θ/ϵ) exp(−ẑ−z0)ς0/p

W[(θ/ϵ) exp(θ/ϵ−ẑ−z0)ς0/p] Pre-policy,

exp(−ẑ − z0)ς0/p Post-policy,

ŷ(ẑ) = [−ϵ max{ln( p̂(ẑ)), 0}]θ/ϵ.

It is straightforward to verify that Yt must grow at the same rate as wt, and ςt must grow
at the same rate as zt on a balanced growth path. From Proposition 5, we know that the
stationary value function asymptotes to an endogenous constant V:

V =
w0cO(1 − x)
(ρ + χ)x

where x ≡ w0cO

πY0D
∈ (0, 1)

where the constant π is given by:

π =

(θ − 1) exp[(1 − θ)/ϵ]θθ/ϵ−1 Pre-policy,

1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1Γ
(

θ
ϵ , 1

ϵ

)
Post-policy.
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Therefore, let us respectively define the firm’s normalized value and profit functions as
V̂(ẑ) ≡ V(ẑ)/V and π̂0(ẑ) ≡ π0(ẑ)/V such that we can rewrite the firm’s HJBE as:

(ρ + χ)V̂(ẑ) = π̂0(ẑ) +
ζγ(ẑ)V̂′(ẑ)

1 + ζ
− gV̂′(ẑ) +

σ2V̂′′(ẑ)
2

with boundary conditions V̂(0) = 0 and limẑ→∞ V̂(ẑ) = 1, and where the first-order
condition of the firm’s dynamic problem becomes:

γ(ẑ) =
[

cO(1 − x)V̂′(ẑ)
(ρ + χ) exp(cI + (1 + ζ)ẑ)x

] 1
ζ

.

Since the measure of varieties is constant on a balanced growth path, the entry rate must
be equated to the sum of the exogenous and endogenous exit rates:

e = χ + (σ2/2)F′′(0).

The stationary Kolmogorov forward equation of the CDF F(ẑ) therefore delivers the
following second-order nonlinear ordinary differential equation:

0 = −[γ(ẑ)− g]F′(ẑ) + (σ2/2){F′′(ẑ)− F′′(0)[1 − F(ẑ)]}+ e[FE(ẑ)− F(ẑ)]

with boundary conditions F(0) = 0 and limẑ→∞ F(ẑ) = 1.

To solve for the two second-order nonlinear ordinary differential equations above (the
firm’s HJBE and the KFE), we need equilibrium conditions that pin down the aggregate
variables they depend on. More precisely, given an initial condition z0, we are looking
for eleven equations to identify the unknowns {Y0, C0, Z0, w0, ς0, r, p, D, M, H, g}:

1. The Kimball (1995) aggregation condition:∫ ∞

0
Υ(ŷ(ẑ))dM(ẑ) = 1.

2. The demand index:

D =

(∫ ∞

0
Υ′(ŷ(ẑ))ŷ(ẑ)dM(ẑ)

)−1

.

3. The free-entry condition:

(1 − x)
∫ ∞

0
V̂(ẑ)dFE(ẑ) = (cE/cO)(ρ + χ)x.
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4. The producer price index:

ς0 =

(
r + δ

α

)α ( w0

1 − α

)1−α

.

5. The household’s Euler equation:

g
1 − α

= r − ρ.

6. The household’s static first-order condition:

βHηC0 = w0.

7. The final good market clearing condition:

C0 = Y0

[
1 − ας0(r + δ − ρ)

Z0(r + δ)

]
.

8. The labor market clearing condition:

(1 − α)ς0Y0

w0Z0
+

cO(1 − x)
∫ ∞

0 γ(ẑ)V̂′(ẑ)dM(ẑ)
(1 + ζ)(ρ + χ)x

+ cEeM + cOM = H.

9. Total-factor productivity:

Z0 = exp(z0)

(∫ ∞

0
ŷ(ẑ) exp(−ẑ)dM(ẑ)

)−1

.

10. The choke price:

p = Υ′(0)D.

11. The value matching condition.

A.2 Proofs

Proof of Propositions 1 and 2. The monopolist’s profits are given by:

π(z) =
p(z)y(p(z))

ϑ(p(z))
.
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The elasticity of profits with respect to productivity is given by:

∂ ln(π(z))
∂z

= [ϑ(p(z)) + ε(p(z))− 1]ϱ(z) where ϱ(z) ≡ −∂ ln(p(z))
∂z

where ϱ(z) denotes the productivity “pass-through”. Using the expression provided in
Section 2 for the profit-maximizing price, we can rewrite ϱ(z) as:

ϱ(z) =
ϑ(p(z))− 1

ϑ(p(z)) + ε(p(z))− 1
.

Substituting this result in the previous expression, we have:

∂ ln(π(z))
∂z

= ϑ(p(z))− 1

such that the partial derivative of profits with respect to productivity is given by:

π′(z) = y(p(z)) exp(−z).

The social surplus is instead given by:

S(z) =
∫ p

c(z)
y(p)dp.

Therefore, its partial derivative with respect to productivity is given by:

S′(z) = y(exp(−z)) exp(−z).

This shows that the ratio R(z) ≡ π′(z)/S′(z) is simply given by the output ratio of
the monopolist and the welfare-maximizing agent, which completes the proof for the
first part of Proposition 1. Taking the elasticity of this ratio with respect to productivity
and using the expression derived above for the monopolist’s productivity pass-through
completes the proof of Proposition 2. To prove the second part of Proposition 1, define
consumer surplus as:

C(z) ≡
∫ p

p(z)
y(p)dp.
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Its partial derivative with respect to productivity is given by:

C′(z) = −∂p(z)
∂z

× y(p(z))

= ϱ(z)p(z)y(p(z))

=
ϑ(p(z))

ϑ(p(z)) + ε(p(z))− 1
× π′(z).

Therefore, the ratio of marginal producer surplus to the sum of marginal consumer and
producer surplus is:

π′(z)
C′(z) + π′(z)

=
ϑ(p(z)) + ε(p(z))− 1

2ϑ(p(z)) + ε(p(z))− 1

which completes the proof for the second part of Proposition 1.

Proof of Proposition 3. Let us start with the expression derived in Appendix A.1.7 for
aggregate output:

Yt = ZtKα
t L1−α

t where Zt ≡
(

Mt

∫ ∞

0
ŷt(ẑ) exp(−ẑ − zt)dFt(ẑ)

)−1

.

On a balanced growth path, Lt and Mt are constant, and Yt and Kt grow at the same
rate. This implies that aggregate output grows at rate g/(1 − α) where g is the constant
growth rate of the endogenous exit threshold, which must grow at the same rate as
TFP on a balanced growth path. To derive an expression for g, let us differentiate the
logarithm of Zt with respect to time, to obtain:

Żt
Zt

= gt − Ṁt
Mt

+
(ς̇t/ςt−gt)

∫ ∞
0 ϑt(ẑ)ϱt(ẑ)ŷt(ẑ) exp(−ẑ)dFt(ẑ)∫ ∞

0 ŷt(ẑ) exp(−ẑ)dFt(ẑ)
−
∫ ∞

0 ŷt(ẑ) exp(−ẑ)Ḟ′
t (ẑ)dẑ∫ ∞

0 ŷt(ẑ) exp(−ẑ)dFt(ẑ)
.

Here gt and ςt still denote the rate of change of the endogenous exit threshold and the
producer price index, respectively. On a balanced growth path, since the measure of
varieties is stationary and the producer price index grows at the same constant rate as
the endogenous exit threshold, we obtain:∫ ∞

0 ŷt(ẑ) exp(−ẑ)Ḟ′
t (ẑ)dẑ∫ ∞

0 ŷt(ẑ) exp(−ẑ)dFt(ẑ)
= 0.

Substituting in the Kolmogorov forward equation of Ft(ẑ) and abandoning the time
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subscripts, we have:

0 = −χ
∫ ∞

0
ŷ(ẑ) exp(−ẑ)dF(ẑ) + e

∫ ∞

0
ŷ(ẑ) exp(−ẑ)dFE(ẑ)

−
∫ ∞

0
ŷ(ẑ) exp(−ẑ)

∂[γ(ẑ)F′(ẑ)]
∂ẑ

dẑ (A.1)

+ g
∫ ∞

0
ŷ(ẑ) exp(−ẑ)F′′(ẑ)dẑ (A.2)

+ (σ2/2)
∫ ∞

0
ŷ(ẑ) exp(−ẑ)F′′′(ẑ)dẑ (A.3)

Now, let us consider each of the three last terms above separately. First, using integration
by parts, the term (A.1) can be rewritten as:

(A.1) = −[ŷ(ẑ) exp(−ẑ)γ(ẑ)F′(ẑ)]∞ẑ=0 +
∫ ∞

0
[ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)γ(ẑ)dF(ẑ)

where ϱ(ẑ) denotes the productivity “pass-through”:

ϱ(ẑ) ≡ −∂ ln( p̂(ẑ))
∂ẑ

.

Similarly, the term (A.2) can be rewritten as:

(A.2) = g[ŷ(ẑ) exp(−ẑ)F′(ẑ)]∞ẑ=0 − g
∫ ∞

0
[ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ).

Notice that the boundary conditions limẑ→∞ F′(ẑ) = F′(0) = 0, the smooth pasting
condition (implying that γ(0) = 0 by the firm’s dynamic first-order condition), the limit
limẑ→∞ ŷ(ẑ) = θθ/ϵ (proved in Proposition 6) and the limit limẑ→∞ γ(ẑ) = 0 (derived in
Appendix A.1.11) imply that:

[ŷ(ẑ) exp(−ẑ)F′(ẑ)]∞ẑ=0 = [ŷ(ẑ) exp(−ẑ)γ(ẑ)F′(ẑ)]∞ẑ=0 = 0

Using integration by parts once again, the term (A.3) can be rewritten as:

(A.3) = (σ2/2)[ŷ(ẑ) exp(−ẑ)F′′(ẑ)]∞ẑ=0 − (σ2/2)
∫ ∞

0
[ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF′(ẑ).

Notice here again that the boundary condition limẑ→∞ F′′(ẑ) = 0 together with the limit
limẑ→∞ ŷ(ẑ) = θθ/ϵ (proved in Proposition 6) imply that:

[ŷ(ẑ) exp(−ẑ)F′′(ẑ)]∞ẑ=0 = −ŷ(0)F′′(0).
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Collecting all terms above and using the fact that the measure of varieties is constant
on a balanced growth path (implying that the entry rate is equal to the sum of the
endogenous and exogenous exit rates), we can solve for g to obtain the expression:

g =

∫ ∞
0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)γ(ẑ)dF(ẑ)∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)

−
(σ2/2)

∫ ∞
0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF′(ẑ)∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)

+
(σ2/2)F′′(0)[

∫ ∞
0 ŷ(ẑ) exp(−ẑ)dFE(ẑ)− ŷ(0)]∫ ∞

0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)

−
χ[
∫ ∞

0 ŷ(ẑ) exp(−ẑ)dF(ẑ)−
∫ ∞

0 ŷ(ẑ) exp(−ẑ)dFE(ẑ)]∫ ∞
0 [ϑ(ẑ)ϱ(ẑ)− 1]ŷ(ẑ) exp(−ẑ)dF(ẑ)

.

Proof of Proposition 4. We want to prove that on a balanced growth path equilibrium
allocation:

lim
ẑ→∞

F(ẑ) = 1 − exp(−λẑ).

To do so, let us guess that as ẑ → ∞:

F(ẑ) = 1 − exp(−λẑ),

F′(ẑ) = λ exp(−λẑ),

F′′(ẑ) = −λ2 exp(−λẑ)

for λ > 0. Substituting these guesses in the stationary KFE derived in Appendix A.1.11
and cancelling terms:

0 = [g − γ(ẑ)]λ + (σ2λ2/2 − χ)

{
T[exp(−λẑ)]

exp(−λẑ)
− 1
}

.

Taking the limit of this equation and using the assumptions that limẑ→∞ γ(ẑ) = γ < ∞

and limẑ→∞
1−FE

t (ẑ)
1−Ft(ẑ)

= 0, we obtain the quadratic equation:

0 = σ2λ2/2 − (g − γ)λ − χ.
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The positive root of this quadratic equation is:

λ =
g − γ +

√
(g − γ)2 + 2χσ2

σ2 .

For that root to be greater than one, we have the additional restriction:

g > γ + σ2/2 − χ

which implies that the distribution of exp(ẑ) is Pareto with a finite mean.

Proof of Proposition 5. Using the household’s Euler equation together with the restriction
that the value of a firm must grow at the same rate as aggregate output on a balanced
growth path, we have the following expression for the firm’s HJBE:

(ρ + χ)Vt(ẑ) = πt(ẑ) + max
γ

{(γ − g)V′
t (ẑ)− wti(γ, ẑ)}+ σ2V′′

t (ẑ)/2

with value matching, smooth pasting and first-order conditions:

Vt(0) = 0, V′
t (0) = 0 and γt(ẑ) =

[
V′

t (ẑ)
wt exp(cI + (1 + ζ)ẑ)

]1/ζ

.

Substituting the first-order condition in the firm’s HJBE, we obtain the second-order
nonlinear ordinary differential equation:

(ρ + χ)Vt(ẑ) = πt(ẑ) +
ζγt(ẑ)V′

t (ẑ)
1 + ζ

− gV′
t (ẑ) +

σ2V′′
t (ẑ)
2

in which the profit function is given by:

πt(ẑ) =

 p̂t(ẑ)ŷt(ẑ)1+ϵ/θΥ′(0)YtDt/θ − wtcO Pre-policy,

[Υ(ŷt(ẑ))−Υ′(ŷt(ẑ))ŷt(ẑ)]YtDt − wtcO Post-policy

and the relative demand and relative price functions are in turn given by:

p̂t(ẑ) =


(θ/ϵ) exp(−ẑ−zt)ςt/pt

W[(θ/ϵ) exp(θ/ϵ−ẑ−zt)ςt/pt]
Pre-policy,

exp(−ẑ − zt)ςt/pt Post-policy,

ŷt(ẑ) = [−ϵ max{ln( p̂t(ẑ)), 0}]θ/ϵ.

Let us now guess and verify that on a balanced growth path, the firm’s value function
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asymptotes to an endogenous constant as ẑ → ∞:

lim
ẑ→∞

Vt(ẑ) = Vt.

Taking the limit of the firm’s HJBE and using Proposition 6, we obtain:

(ρ + χ)Vt = lim
ẑ→∞

πt(ẑ) = πYtDt − wtcO

where the constant π is given by:

π =

(θ − 1) exp[(1 − θ)/ϵ]θθ/ϵ−1 Pre-policy,

1 + (θ − 1) exp(1/ϵ)ϵθ/ϵ−1Γ
(

θ
ϵ , 1

ϵ

)
Post-policy

which completes the proof.

Proof of Proposition 6. We want to prove that:

lim
ẑ→∞

p̂t(ẑ) = exp(−θ/ϵ) and lim
ẑ→∞

ŷt(ẑ) = θθ/ϵ.

Let us remember that a variety’s relative price is given by:

p̂t(ẑ) =
(θ/ϵ) exp(−ẑ − zt)ςt/pt

W[(θ/ϵ) exp(θ/ϵ − ẑ − zt)ςt/pt]
.

Defining the change of variable x ≡ (θ/ϵ) exp(θ/ϵ − ẑ − zt)ςt/pt and using l’Hôpital’s
rule together with the second property of the Lambert W-function, we find:

lim
ẑ→∞

p̂t(ẑ) = lim
x→0

x
W(x) exp(θ/ϵ)

= exp(−θ/ϵ).

Clearly, since the relative demand function is given by:

ŷ( p̂) =

[−ϵ ln( p̂)]θ/ϵ if p̂ < 1,

0 otherwise

we immediately obtain the result that limẑ→∞ ŷt(ẑ) = θθ/ϵ.
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A.3 Extensions

Product Quality Improvements

In this section, we consider both productivity and quality improvements as the nature
of an innovation. In particular, we denote a firm’s quality relative to the lowest quality
q

t
in the economy by q̂ ∈ [0, ∞) and adopt the theoretical definition of a variety’s quality

proposed by Baqaee, Farhi and Sangani (2023). That is, the quality and quantity of a
product are assumed to be perfect substitutes.

Taking prices as given, the final sector’s problem is to choose its relative demand for
each variety to maximize profits in each period:

max
{ŷt(ẑ,q̂)}∞

ẑ,q̂=0

{
Pt − Mt

∫
pt(ẑ, q̂)ŷt(ẑ, q̂)dFt(ẑ, q̂)

}
Yt

s.t. Mt

∫
Υ[exp(q̂ + q

t
)ŷt(ẑ, q̂)]dFt(ẑ, q̂) = 1.

Reformulating the final sector’s problem as a cost-minimization problem subject to the
Kimball (1995) aggregator constraint using the Lagrangian, we have:

Lt({ŷt(q̂)}∞
ẑ,q̂=0, νt) = Mt

∫
pt(ẑ, q̂)ŷt(ẑ, q̂)dFt(ẑ, q̂) + νt

(
Mt
∫
Υ[exp(q̂ + q

t
)ŷt(ẑ, q̂)]dFt(ẑ, q̂)− 1

)
where νt now denotes the Lagrange multiplier. The first-order conditions are:

pt(ẑ, q̂) = νt exp(q̂ + q
t
)Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)] and Mt

∫
Υ[exp(q̂ + q

t
)ŷt(ẑ, q̂)]dFt(ẑ, q̂) = 1.

Since the final sector is perfectly competitive and makes no profit, we have:

Pt = Mt

∫
pt(ẑ, q̂)ŷt(ẑ, q̂)dFt(ẑ, q̂).

Substituting in the first-order conditions, we obtain a solution for νt:

νt = PtDt where Dt ≡
(

Mt
∫
Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)] exp(q̂ + q

t
)ŷt(ẑ, q̂)dFt(ẑ, q̂)

)−1
.

This delivers the following inverse demand functions:

pt(ẑ, q̂) = exp(q̂ + q
t
)Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)]PtDt.

Firms engage in monopolistic competition in the product market but perfect compe-
tition in the input markets. That is, a firm chooses the price at which to sell its variety as
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well as its demand for physical capital and production labor to maximize profits in each
period. The firm takes as given the demand for its variety, the rental rate of capital rt

and the wage rate wt, which delivers the following problem:

πt(ẑ, q̂) = max
pt(ẑ,q̂),kt(ẑ,q̂),lt(ẑ,q̂)

{pt(ẑ, q̂)yt(ẑ, q̂)− (rt + δ)kt(ẑ, q̂)− wtlt(ẑ, q̂)} − wtcO

subject to the inverse demand function pt(ẑ, q̂) = exp(q̂ + q
t
)Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)]Dt.

Let us first consider the sub-problem of optimally choosing the demand for capital and
labor, which can be reformulated as a cost-minimization problem. Using the Lagrangian:

Lt(kt(ẑ, q̂), lt(ẑ, q̂), νt) = (rt + δ)kt(ẑ, q̂) + wtlt(ẑ, q̂) + νt[yt(ẑ, q̂)− exp(ẑ + zt)kt(ẑ, q̂)αlt(ẑ, q̂)1−α]

where νt denotes the Lagrange multiplier. The first-order conditions are:

kt(ẑ, q̂) =
ανtyt(ẑ, q̂)

rt + δ
,

lt(ẑ, q̂) =
(1 − α)νtyt(ẑ, q̂)

wt
,

yt(ẑ, q̂) = exp(ẑ + zt)kt(ẑ, q̂)αlt(ẑ, q̂)1−α.

Solving for the Lagrange multiplier, we have:

νt = ςt exp(−ẑ − zt) where ςt ≡
(

rt + δ

α

)α ( wt

1 − α

)1−α

.

Therefore, we can rewrite the firm’s static problem as:

πt(ẑ, q̂) = max
pt(ẑ,q̂)

{[pt(ẑ, q̂)− ςt exp(−ẑ − zt)]ŷt(ẑ, q̂)}Yt − wtcO

s.t. pt(ẑ, q̂) = exp(q̂ + q
t
)Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)]Dt.

Reformulating it as a choice of ŷt(ẑ, q̂) given the inverse demand function pt(ẑ, q̂):

πt(ẑ, q̂) = maxŷt(ẑ,q̂){[exp(q̂ + q
t
)Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)]Dt − ςt exp(−ẑ − zt)]ŷt(ẑ, q̂)}Yt − wtcO.

The first-order condition is:

{Υ′′[exp(q̂ + q
t
)ŷt(ẑ, q̂)] exp(q̂ + q

t
)ŷt(ẑ, q̂) +Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)]} exp(q̂ + q

t
)Dt = ςt exp(−ẑ − zt).
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We can rearrange this expression as:

pt(ẑ, q̂) =
µt(ẑ, q̂)ςt

exp(ẑ + zt)
where µt(ẑ, q̂) ≡ ϑt(ẑ, q̂)

ϑt(ẑ, q̂)− 1

and where ϑt(ẑ, q̂) denotes the price elasticity of demand:

ϑt(ẑ, q̂) ≡ −
Υ′[exp(q̂ + q

t
)ŷt(ẑ, q̂)]

Υ′′[exp(q̂ + q
t
)ŷt(ẑ, q̂)] exp(q̂ + q

t
)ŷt(ẑ, q̂)

∈ (1, ∞).

Substituting the monopoly pricing function in the profit function, we have:

πt(ẑ, q̂) =
pt(ẑ, q̂)ŷt(ẑ, q̂)Yt

ϑt(ẑ, q̂)
− wtcO.

Denoting the quality-specific choke price by pt(q̂) ≡ exp(q̂ + q
t
)Υ′(0)Dt, we can define

a variety’s relative price as p̂t(ẑ, q̂) ≡ pt(ẑ, q̂)/pt(q̂). This allows us to rewrite the relative
demand function as:

ŷt(ẑ, q̂) = Υ′−1
[ p̂t(ẑ, q̂)Υ′(0)]/ exp(q̂ + q

t
).

Using the Klenow and Willis (2016) specification of the Kimball (1995) aggregator, we
can rewrite the monopoly pricing condition (relative to the choke price) as:

p̂t(ẑ, q̂) =
ςt

[1 + (ϵ/θ) ln( p̂t(ẑ, q̂))] exp(ẑ + zt)pt(q̂)

Note that we can rearrange this equation to obtain:

exp{(θ/ϵ)[ςt[ p̂t(ẑ, q̂) exp(ẑ + zt)pt(q̂)]
−1 − 1]} p̂t(ẑ, q̂)−1 = 1

Multiplying both sides by (θ/ϵ) exp(θ/ϵ)ςt[exp(ẑ + zt)pt(q̂)]
−1, we have:

W−1{(θ/ϵ)ςt[ p̂t(ẑ, q̂) exp(ẑ + zt)pt(q̂)]
−1} = (θ/ϵ) exp(θ/ϵ)ςt[exp(ẑ + zt)pt(q̂)]

−1.

Finally, solving for p̂t(ẑ, q̂) delivers:

p̂t(ẑ, q̂) =
(θ/ϵ) exp(−ẑ − zt)ςt/pt(q̂)

W[(θ/ϵ) exp(θ/ϵ) exp(−ẑ − zt)ςt/pt(q̂)]
.

Substituting in the expression for the quality-specific choke price and defining the firm’s

84



composite state variable as xt ≡ zt + qt, we have:

p̂t(x̂) =
(θ/ϵ) exp(−x̂ − xt)ςt/pt

W[(θ/ϵ) exp(θ/ϵ) exp(−x̂ − xt)ςt/pt]
where pt ≡ Υ′(0)Dt

which is isomorphic to our framework. Therefore, profits are given by:

πt(x̂) =
p̂t(x̂)Υ′−1[ p̂t(x̂)Υ′(0)]ptYt

ϑt(x̂)
− wtcO

which is also isomorphic to our framework. Using the above expressions, the firm’s
markup is given by the following function:

µt(x̂) =
θ/ϵ

W[(θ/ϵ) exp(θ/ϵ) exp(−x̂ − xt)ςt/pt]
.

Inverting this function, we have:

x̂t(µ) = ln(µ) + (θ/ϵ)(1 − µ−1) + ln(ςt/pt)− xt.

B Numerical Appendix

This section of the Appendix provides details on the numerical strategies we use to solve
and quantify the model.

B.1 Spectral Collocation and Quadrature

Following Miranda and Fackler (2004), we approximate the solutions of the HJBE and
KFE using spectral collocation in the spatial dimension on the interval ẑ ∈ [0, ∞). But
first, we consider a change of variable to approximate the solutions of the HJBE and KFE
on the unit line:

Vt(ẑ) = Vt(z̃) and Ft(ẑ) = Ft(z̃) where z̃ ≡ νẑ
νẑ + 1

.
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Here, ν > 0 is a parameter governing the curvature of the change of variable. With this
change of variable, we can use the chain rule to obtain:

V′
t (ẑ) = ν(1 − z̃)2V ′(z̃),

V′′
t (ẑ) = ν2(1 − z̃)3[(1 − z̃)V ′′

t (z̃)− 2V ′
t(z̃)],

F′
t (ẑ) = ν(1 − z̃)2F ′

t (z̃),

F′′
t (ẑ) = ν2(1 − z̃)3[(1 − z̃)F ′′

t (z̃)− 2F ′
t (z̃)].

Under this reformulation, the boundary conditions of Vt(z̃) and Ft(z̃) are:

Vt(0) = V ′
t(0) = Ft(0) = 0 and Ft(1) = 1.

We approximate the functions Vt(ẑ) and Ft(ẑ) over n − 2 Chebyshev nodes {z̃i}n−1
i=2 on

the unit line to which we append the boundaries z̃1 = 0 and z̃n = 1. The approximation
is a linear combination of Chebyshev basis functions {bj(z̃)}n

j=1 of degree n whose
time-varying coefficients {cV

j (t), cF
j (t)}n

j=1 are to be determined:

Vt(z̃i) ≈
n

∑
j=1

cV
j (t)bj(z̃i) and Ft(z̃i) ≈

n

∑
j=1

cF
j (t)bj(z̃i).

In particular, the coefficients {cV
j (t), cF

j (t)}n
j=1 are chosen to satisfy the HJBE and KFE

over the nodes {z̃i}n−1
i=2 as well as the boundary conditions of Vt(ẑ) and Ft(ẑ) at z̃1 = 0

and z̃n = 1. In addition, the value of the free boundary zt is chosen to satisfy the smooth
pasting condition V ′

t(0) = 0. However, the solutions of the HJBE and KFE depend
on unknown endogenous economic variables that are constrained by equilibrium con-
ditions. These equilibrium conditions involve integrals which we approximate using
Chebyshev–Gauss quadrature over the same set of nodes {z̃i}n−1

i=2 as above. That is, for
an arbitrary function f , we approximate the following integral:

∫ ∞

0
ft(ẑ)dẑ =

∫ 1

0

ft(ẑ(z̃))
ν(1 − z̃)2 dz̃ ≈

n−1

∑
i=2

ft(ẑ(z̃i))

ν(1 − z̃i)2 ωi where ẑ(z̃) ≡ z̃
ν(1 − z̃)

and where {ωi}n−1
i=2 denote the Chebyshev–Gauss quadrature weights.

B.2 MPEC-BGP Estimation Strategy

To estimate the structural parameters of our theory, solving for a balanced growth path
equilibrium at multiple parameter guesses is computationally expensive. An alternative
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approach discussed in Su and Judd (2012) and Dubé et al. (2012) is to reformulate the
estimation problem as a mathematical program with equilibrium constraints (MPEC).

Instead of solving for a balanced growth path equilibrium allocation at multiple
guesses of these parameters, our approach is to treat the model’s equilibrium conditions
as constraints in the optimization problem. That is, we search for parameters as well as
endogenous economic variables to minimize a GMM objective subject to the constraints
that the model’s equilibrium conditions are met.

More formally, let us describe the balanced growth path equilibrium allocation of our
model as an Nx × 1 vector of endogenous variables x that depend on an NΩ × 1 vector
of parameters Ω through the Nx × 1 vector of equilibrium conditions:

h(x, Ω) = 0.

We let X(Ω) denote the set of all x such that h(x, Ω) = 0:

X(Ω) := {x : h(x, Ω) = 0}.

For some weighting Nm × Nm matrix W and an Nm × 1 vector of moments m(x, Ω),
define the GMM estimator as the vector Ω∗ that solves the problem:

Ω∗ = arg min
Ω

{ min
x∈X(Ω)

m(x, Ω)⊤Wm(x, Ω)}.

Denote by x∗(Ω∗) the optimal solution of endogenous variables for this problem. This
approach is particularly powerful when the functions h(x, Ω) and m(x, Ω) are both
twice differentiable in their arguments since we can exploit their Jacobian and Hessian
to efficiently find a solution. We implement this using the commercial nonlinear solver
KNITRO (Byrd, Nocedal and Waltz, 2006) as well as the open source nonlinear solver
IPOPT (Wächter and Biegler, 2006) through the interface of JuMP (Lubin, Dowson,
Dias Garcia, Huchette, Legat and Vielma, 2023), a modeling language for mathematical
optimization embedded in Julia.

B.2.1 Identification

Andrews, Gentzkow and Shapiro (2017) suggest that researchers report the sensitivity
of their parameter estimates to moment conditions. This sensitivity matrix is denoted by
Λ and defined as:

Λ = −[G(x∗(Ω∗), Ω∗)⊤WG(x∗(Ω∗), Ω∗)]−1G(x∗(Ω∗), Ω∗)⊤W
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where G(x∗(Ω∗), Ω∗) is the Nm × NΩ Jacobian of m(x, Ω) with respect to parameters,
evaluated at x∗(Ω∗) and Ω∗. However, to calculate this Jacobian, we must account for
the dependency between endogenous variables and parameters through the equilibrium
conditions h(x∗(Ω∗), Ω∗) = 0. As such, we can define that Jacobian using the implicit
function theorem:

G(x∗(Ω∗), Ω∗) := ∇Ωm(x∗, Ω∗)−∇xm(x∗, Ω∗)[∇xh(x∗, Ω∗)]−1∇Ωh(x∗, Ω∗).

Figures B.8 and B.9 respectively plot the matrices Λ and G(x∗(Ω∗), Ω∗) (in elasticity
form) for the five jointly estimated parameters and the six moment conditions presented
in Section 4.2.

Figure B.8: Sensitivity Matrix

Note: This heat map plots the sensitivity matrix Λ of parameters with respect to
moment conditions. The color palette is normalized for each row separately to ease
visualization and the matrix is presented in elasticity form.

A first observation is that the standard deviation of the Brownian motion σ is mostly
identified by the dispersion of value added and the overall exit rate. It is perhaps
no surprise that this parameter is sensitive to the dispersion in value-added, since it
determines the volatility of the productivity process. But this volatility also influences
the rate at which unproductive firms are swept below the exit threshold, explaining why
σ is sensitive to the exit rate. Further, this parameter is also sensitive to the aggregate
markup–since it determines the shape of the relative productivity distribution over
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which firm-level markups are aggregated–and to the aggregate growth rate, which is
directly reliant on this parameter as noted in Proposition 3.

Figure B.9: Jacobian Matrix

Note: This heat map plots the Jacobian matrix G(x∗(Ω∗), Ω∗) of moment conditions
with respect to parameters. The color palette is normalized for each row separately
to ease visualization and the matrix is presented in elasticity form.

Similarly, the innovation cost scale and elasticity parameters cI and ζ are mainly
identified by these same four moments. The intuition underlying these relationships is
as follows: to decide how much to invest in R&D, the firm compares the marginal value
to the marginal cost of such investments. The parameters cI and ζ influence the scale
and shape of that marginal cost function, which thus dictate the firm’s productivity drift
function and in turn the shape of the relative productivity distribution. Since these four
moments are explicitly dependent on this stationary distribution, it is consistent with
our understanding that they identify cI and ζ.

The parameter ξ determines the transformation of the incumbent distribution from
which entrants draw their relative productivity. Therefore, it is not surprising that this
parameter is sensitive to the relative size of entrants. However, it is also sensitive to
the dispersion of value-added since it acts as a compressing force on the variance of
the relative productivity distribution. Therefore, and by the same intuition mentioned
above, this parameter is also sensitive to the aggregate markup.

Finally, the entry cost parameter cE is primarily identified by the dispersion in value-
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added, which is intricately tied to the shape of the relative productivity distribution. But
the shape of that distribution is in large part determined by firms’ investments in R&D
who compete against one another for labor. The intensity of that competition, in turn, is
dictated by the endogenous measure of varieties, which depends on the flow of entrants
and, consequently, on the entry cost parameter itself.

C Empirical Appendix

This section of the Appendix provides details on the construction of variables of interest
from our main source of data and on the estimation of our theory’s structural parameters.

C.1 Data

Our main source of data is the Fichier Approché des Résultats d’Esane (FARE). This is an
annual panel dataset, covering the period 2009–2019, with the balance sheet and income
statements for the universe of firms in France that are subject to the standard corporate
tax (excluding the financial and farming sectors).

Given that this dataset is compiled from tax declarations, the unit of observation is a
legal entity (unité légale), each identified by a unique Siren number. Recognizing that this
does not correspond to what users of the data would call a firm, the National Institute
of Statistics and Economic Studies (INSEE) developed definitions of consolidated firms
(entreprises profilées): a collection of legal entities that are part of the same group identified
by a unique Sirus number. We use the Contour des Entreprises Profilées from 2019 to define
the boundaries of the firms in our sample.

The main variables of interest are the firm’s industry of operation, value-added,
wage bill, and capital stock.

• The main industry of operation for the firm is a 5-digit industry from the NAF
classification. For consolidated firms, this is provided in the Contours files.

• Annual value added excludes VAT and is calculated as gross output (sum of sales
and the gross value of stored production) net of expenditures on intermediate
inputs, materials, and other external expenses, as well as changes in the stock of
intermediate inputs and materials.

• The annual wage bill includes all labor costs for the firm and is obtained by sum-
ming expenditures on salaries (including bonuses) and social security payments.
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• Capital is the sum of tangible capital, inventories, and rental and lease payments.
We calculate the book value of tangible capital as the gross acquisition value net
of accumulated depreciation. To convert to current prices, we multiply this book
value by the ratio of the aggregate price index for gross fixed capital formation
in the current year to its value in the acquisition year.39 For every firm-by-year
observation, we have an estimate of the acquisition year of capital since, assuming
a constant depreciation rate, the ratio of accumulated depreciation to gross acqui-
sition value can be used to recover an average age for the firm’s capital stock.40

Formally, denoting by kT
jit the stock of tangible capital of firm j in industry i in year

t, kI
jit its inventories and Rjit its lease and rental payments, we define:

k jit = kT
jit + kI

jit +
Rjit

rt + δ
s.t. (rt + δ)k jit = (rt + δ)(kT

jit + kI
jit) + Rjit.

We obtain firm-level value-added, wage bill and capital stock by summing each of
these variables over the different legal units that constitute a firm.

We keep in our sample private businesses with a regular taxation scheme and drop
any firm with a negative value for value-added, wage bill, stock of tangible capital,
inventories, or rental and lease payments. Additionally, we winsorize each of these
variables at the 1% level at the 2-digit industry by year level. With these selection criteria,
we end up with a sample of 5,423,743 (firm-year) observations between 2009 and 2019,
with 831,297 unique firms overall. Table C.11 presents summary statistics for the main
variables of interest in our sample.

Table C.11: Summary Statistics

Variable Mean 5th %ile 25th %ile Median 75th %ile 95th %ile

Value Added 938 26 116 265 584 2790

Wage bill 700 18 94 214 467 2149

Tangible capital + inventories 823 1 19 77 256 1987

Note: Units are in thousands of current Euros.

39This price index is provided by the INSEE.
40We use a depreciation rate of 10% for the tangible capital stock, consistent with French accounting

standards.
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C.2 Structural Estimation

The Klenow and Willis (2016) Parameters

A key parameter to discipline in our theory is the ratio of ϵ and θ. This ratio measures
how steeply markups increase in firms’ productivity and therefore partly determines
the degree of dispersion in markups. If both markups and market shares are observed
at the firm level, one can use the demand functions for varieties to estimate this ratio.41

In particular, let us consider a generalization of the Kimball (1995) aggregator:

I

∑
i=1

xit

∫
j∈Jt

qjiΥ(ŷjit)dj = 1

where xit is an industry-time-specific demand shifter and qji denotes the unobserved
time-invariant “quality” of variety j. This demand system implies the following inverse
demand functions in logarithms:

ln(pjit) = ln(xit) + ln(qji) + ln(Dt) + ln(Υ′(ŷjit))

where Dt is the time-varying demand index and the function Υ′(ŷ) is given by:

Υ′(ŷ) =
(

θ − 1
θ

)
exp

(
1 − ŷϵ/θ

ϵ

)
.

Adding ln(ŷjit) to both sides of this equation, and denoting the market share of firm j
from industry i at time t by sjit, we obtain:

ln(sjit) = ln(xit) + ln(qji) + ln(Dt) + ln(Υ′(ŷjit)) + ln(ŷjit).

Since markups are related to relative demand as:

µ−1
jit = 1 − ŷϵ/θ

jit /θ

we can rewrite the previous equation as:

µ−1
jit + ln(1 − µ−1

jit ) = ψ + (ϵ/θ)[ln(sjit)− ln(xit)− ln(qji)− ln(Dt)]

where the constant is given by ψ ≡ θ−1
θ − (ϵ/θ) ln

(
θ−1

θ

)
. Hence, regressing the nonlin-

ear transformation µ−1
jit + ln(1 − µ−1

jit ) of firm-level markups on firm-level market shares,

41We calculate µjit and market share as described in Section 4.1
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controlling for industry, industry-time, time and firm fixed effects delivers a consistent
estimate of θ/ϵ.

Calculating the Targeted Moments

Our GMM estimation strategy uses three moments calculated from the FARE data:

• Within-industry standard deviation of log value added.

• Average annual growth of firm-level value-added, deflated with the GDP deflator.

• Relative size of entrants, calculated as the ratio of the average value added of an
incumbent to the average value added of an entrant. In calculating this moment,
we treat any firm as an entrant if it has been created within the past five years, and
an incumbent otherwise.

We calculate each of these moments at the 2-digit industry-by-year level. We then
aggregate by year, weighting each industry by its share of value added in that year.
Finally, we take a simple average of each of these moments across the different years in
our sample.

C.3 Additional Tables

In this section of the Appendix, we present tables for the alternative assumptions and
policy counterfactuals discussed and considered in the main text. In particular, we
replicate Tables 3, 4, 5 and 6.
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Table C.12: Markups and Market Shares

Dependent variable: µ−1
jit + ln(1 − µ−1

jit )

Unadjusted capital share Adjusted capital share

ln(sjit) 0.047 0.234 0.243 0.048 0.224 0.231
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001)

Firm fixed effects Y Y Y Y
Industry × year fixed effects Y Y Y Y Y Y
Industry fixed effects Y Y
Year fixed effects Y Y
Age group fixed effects Y Y Y Y

R2 0.090 0.505 0.507 0.087 0.523 0.524
Observations 4.9M 4.9M 4.9M 5M 5M 5M

Note: Firm-level markups and market shares are constructed from the FARE dataset as described in
Section 4.1. This table presents different regression specifications with firm fixed effects, 5-digit NACE
industry fixed effects and age group fixed effects (for a total of 20 evenly-spaced age groups). Standard
errors (in parentheses) are clustered at the firm level. The total number of observations is below the total
sample size of 5.4M because negative markups were estimated for some firms. In the columns labeled
“adjusted capital share”, the industry-specific capital cost shares measured in the data are inflated by a
constant such that the aggregate capital cost share is equal to 1/3, consistent with our calibrated model.
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Table C.13: Economic Aggregates for Fixed Innovation Labor

Aggregate Before After Change

Labor allocations:
Labor supply 0.264 0.319 +20.8%
Production labor 0.227 0.263 +16.1%
Innovation labor 0.020 0.020 0.0%
Entry labor 0.015 0.034 +122.2%
Overhead labor 0.002 0.001 -33.2%

Firms, entry and exit:
Measure of varieties 0.044 0.029 -33.2%
Entry rate 5.32% 17.68% +12.4p.p.
Endogenous exit rate 3.97% 16.33% +12.4p.p.

Note: This table presents the pre- and post-policy level of various economic aggregates as well as the
corresponding percentage change when fixing the aggregate allocation of labor to innovation to its initial
level before the implementation of the policy intervention. Doing so requires imposing a uniform tax of
44.5% on firms’ expenditures on R&D.

Table C.14: Economic Aggregates for Alternative Transfer Schedules

Aggregate Before Level fix Dispersion fix

After Change After Change

Labor allocations:
Labor supply 0.264 0.304 +15.3% 0.284 +7.8%
Production labor 0.227 0.271 +19.5% 0.214 -5.7%
Innovation labor 0.020 0.017 -12.9% 0.039 +93.4%
Entry labor 0.015 0.014 -8.9% 0.031 +100.2%
Overhead labor 0.002 0.001 -1.7% 0.001 -40.5%

Firms, entry and exit:
Measure of varieties 0.044 0.043 -1.7% 0.026 -40.5%
Entry rate 5.32% 4.93% -0.4p.p. 17.89% +12.6p.p.
Endogenous exit rate 3.97% 3.59% -0.4p.p. 16.54% +12.6p.p.

Note: This table presents the pre- and post-policy level of various economic aggregates as well as the
corresponding percentage change under alternative policy interventions. Specifically, the columns labeled
“Baseline”, “Level fix” and “Dispersion fix” refer to the transfers that rectify both, and either the level or
dispersion in markups, respectively.
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Table C.15: Structural Parameters for Alternative Aggregate Markup Targets

Parameter Symbol Value Value
M=1.1 M=1.5

Household preferences:
Rate of time preference ρ 0.04 0.04
Labor supply utility weight β 11.6 9.3
Frisch elasticity of labor supply reciprocal η 1 1

Final sector technology:
Klenow and Willis (2016) elasticity param. θ 54.5 6.8
Klenow and Willis (2016) super-elasticity param. ϵ 26.78 1.53

Firm production technology:
Output elasticity of physical capital α 0.33 0.33
Depreciation rate of physical capital δ 0.06 0.06
Overhead cost parameter cO 0.05 0.03

Firm innovation technology:
Brownian motion standard deviation σ 0.03 0.05
Innovation cost scale parameter cI 11.04 4.83
Innovation cost elasticity parameter ζ 1.10 0.48

Entry and exit:
Entry cost parameter cE 1.15 3.49
Entry distribution parameter ξ 2.03 2.39
Exogenous exit rate χ 1.34% 1.34%

Note: This table presents the assigned/estimated structural parameters of our theory under alternative
aggregate markup targets. Specifically, the columns labeled “M=1.1” and “M=1.5” respectively refer to
parameterizations that target a cost-weighted average markup of 1.1 and 1.5.
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Table C.16: Moments for Alternative Aggregate Markup Targets

Moment Model Model Data
M=1.1 M=1.5

Cost-weighted average markup 1.10 1.50
GDP per hour worked growth rate 1.15% 1.16% 1.16%
Incumbent value added growth rate 1.24% 1.24% 1.24%
Exit rate of all firms 10.24% 3.62% 5.61%
Relative size of entrants by value added 0.37 0.26 0.31
Standard deviation of log value added 1.54 1.42 1.54

Note: This table presents targeted moments and their resulting value in our model under alternative
aggregate markup targets. Specifically, the columns labeled “M=1.1” and “M=1.5” respectively refer to
parameterizations that target a cost-weighted average markup of 1.1 and 1.5.

Table C.17: Economic Aggregates for Alternative Aggregate Markup Targets

Aggregate M=1.1 M=1.5

Before After Change Before After Change

Labor allocations:
Labor supply 0.264 0.285 +7.9% 0.264 0.368 +39.6%
Production labor 0.245 0.258 +5.3% 0.211 0.256 +21.6%
Innovation labor 0.005 0.016 +191.3% 0.034 0.079 +134.2%
Entry labor 0.053 0.047 -10.3% 0.029 0.058 +101.4%
Overhead labor 0.003 0.002 -43.5% 0.004 0.002 -45.7%

Firms, entry and exit:
Measure of varieties 0.078 0.044 -43.5% 0.119 0.065 -45.7%
Entry rate 10.24% 16.27% +6.0p.p. 3.62% 13.43% +9.8p.p.
Endogenous exit rate 8.90% 14.93% +6.0p.p. 2.28% 12.09% +9.8p.p.

Note: This table presents the pre- and post-policy level of various economic aggregates as well as the
corresponding percentage change under alternative aggregate markup targets. Specifically, the columns
labeled “M=1.1” and “M=1.5” respectively refer to parameterizations that target a cost-weighted average
markup of 1.1 and 1.5.
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