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Abstract

In 1976, 4% of inventors in the U.S. were women, and by 2020, that fraction had
only moved up to 12%. Under the natural assumption that there are no intrinsic
differences in inventive potential across genders, the scarcity of women in innovation
reveals that the U.S. is missing out on some of its brightest minds. This raises
two questions: (1) What are the barriers faced by those “lost” Jennifer Doudnas?
and (2) How costly is the resulting misallocation of inventive talent for aggregate
productivity and welfare? To tackle those questions, I develop a theory of semi-
endogenous growth in which individuals with heterogeneous talent choose between
a career in research or production. However, three gendered barriers can deter
or prevent women from pursuing their comparative advantage. They may face
different forms of discrimination in the labor market, be confronted with higher
obstacles to human capital formation or lack the opportunities and role models to
become innovators. Interpreting micro-level data on the universe of U.S. inventors
through the lens of this framework, I find that the underrepresentation of women in
innovation is virtually all due to a lack of exposure to innovation. Women and men
inventors are just too similarly productive and educated for distortions operating
through selection or human capital to play a prominent role. Taking advantage
of the structure of this theory, I find that lifting all barriers to female innovation
would increase U.S. income per person by 8.6% in the long run. Accounting for
transition dynamics reveals that this policy would be equivalent to permanently
raising everyone’s consumption by 2.7%.
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1 Introduction

Economic growth is the product of a handful of people discovering infinitely usable
ideas that raise everyone’s living standards. With this crucial role, the hope is that
our brightest and most creative minds engage in the process of innovation. But is that
really the case? In 1976, 4% of inventors in the U.S. were women, and by 2020, that
fraction had only inched up to 12%.1 Under the natural assumption that there are no
innate gender differences in inventive ability, the vast underrepresentation of women
in research reveals that the U.S. is missing out on some of its most talented inventors.
This observation prompts two questions: (1) What are the barriers faced by those “lost”
Jennifer Doudnas? and (2) How costly is the resulting misallocation of inventive talent
for aggregate productivity and welfare?

To tackle those questions, I interpret micro-level data on the universe of U.S.-based
inventors through the lens of a general equilibrium theory of semi-endogenous growth
with expanding varieties. In this model, there are two occupations: inventors who
discover new varieties and workers who produce existing ones. Individuals in this
economy are heterogeneous in their raw talent for innovation and must make two key
decisions: choose how much human capital to accumulate and decide whether to pursue
a career in research or production (Roy, 1951). Yet, three occupation-specific barriers
may deter or prevent women from pursuing their comparative advantage.

First, women can be denied due compensation for their inventions, which is modeled
as an exogenous tax on their earnings. To illustrate this distortion, consider the case of
Gerty Cori, the first American woman to win a Nobel Prize in science. Two years after
discovering the Nobel Prize-winning Cori cycle with her husband Carl Cori, the only
employment she could find was that of a research associate at Washington University,
receiving a tenth of her husband’s salary. While Carl was extended an invitation to
chair the university’s pharmacology department, Gerty would have to wait another 16
years to be promoted to a full professorship (American Chemical Society, 2004a,b).2

Her unfortunate experiences echo the many forms of workplace discrimination that
women confront throughout their careers in research. Some revealing examples are the
asymmetrical sharing of rents from patents (Kline, Petkova, Williams and Zidar, 2019),
unequal access to patent assistance or financial resources (Ewens and Townsend, 2020;
Hannon, 2021; Pairolero, Toole, DeGrazia, Teodorescu and Pappas, 2022; Morazzoni

1Inventors are defined as residents of the United States who have been granted a patent by the U.S.
Patent and Trademark Office. This study focuses on gender because other demographic characteristics
such as race or family income are not available in patent data and are much harder to infer.

2Despite all of their work being collaborative, Carl Cori was also the sole recipient of the Albert Lasker
Award for Basic Medical Research and the American Chemical Society’s Willard Gibbs Medal.
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and Sy, 2022) or outright denial of their scientific contributions (Jensen, Kovács and
Sorenson, 2018; Hofstra, Kulkarni, Galvez, He, Jurafsky and McFarland, 2020; Hochberg,
Kakhbod, Li and Sachdeva, 2023; Ross, Glennon, Murciano-Goroff, Berkes, Weinberg
and Lane, 2022).

Second, women can face higher barriers to human capital formation throughout
the entire innovation pipeline. This is modeled as differential disutility from time
spent in schooling for aspiring women inventors. This distortion should be interpreted
broadly, as a reflection of the many forms of discrimination that women and girls may
face in the development of particular skills required in research careers. For instance,
gender norms and stereotypes might influence how educators and parents invest in
their students’ or daughters’ human capital by distorting both the extent and direction
of those investments. Women may also be dissuaded from pursuing studies in fields
where the learning environment is particularly hostile towards them. A recent report by
the National Academies of Sciences, Engineering, and Medicine (2018) found that 20%
to 50% of female students in U.S. STEM programs experienced sexual harassment from
faculty or staff depending on their field and degree.

Lastly, women may simply not be as frequently “exposed” to inventive careers and
opportunities during their formative years as their male counterparts, regardless of their
talent. Receiving exposure to innovation is modeled as a binary random variable that
determines whether someone can choose to invent or not. This distortion is intended to
capture one of the key findings from Bell, Chetty, Jaravel, Petkova and Van Reenen (2018),
which is that girls who grow up surrounded by more women who patent in a specific
field are more likely to go on to patent in the same field. Hence, a lack of relevant role
models could prevent girls from forming aspirations and/or having enough information
to invent. Gerty Cori was no exception to this pattern. Her father Otto Radnitz was
a chemist turned manager of beet-sugar refineries after successfully devising a sugar
refining process. Perhaps not surprisingly, Gerty Cori would years later win her Nobel
Prize for describing the fate of sugar in the human body.

Discerning the salience of each distortion is crucial for devising practical solutions to
the gender gap in innovation. Not all barriers are created equal, and their respective
toll on aggregate productivity necessitates a nuanced assessment of their consequences.
Labor market discrimination and barriers to human capital accumulation mainly operate
through selection, thereby deterring women from the lower echelons of inventive talent.
Hence, were these distortions to be neutralized, we may not witness an unprecedented
influx of highly talented women into the innovation process. In contrast, insufficient
exposure to inventive careers indiscriminately closes the door to invention for women,
irrespective of their position on the talent spectrum. Mitigating this particular barrier
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could thus unlock a vast reservoir of untapped talent, including potential innovators
of exceptional ability. The implications are profound: targeting the right barriers could
not only balance gender representation but also elevate the caliber of inventions and,
consequently, propel economic growth.

To disentangle those distortions through the prism of the model, I rely on two key
assumptions: (1) women and men draw their talent from the same distribution and (2)
the probability of receiving exposure to innovation is independent of one’s talent draw.
While the first assumption is a natural starting point, the second is motivated by evidence
from Bell et al. (2018) that children who grow up in areas with a greater concentration
of inventors do not seem to have different latent cognitive abilities as proxied by early
childhood test scores. With these premises, the model has clear implications for both the
extensive (quantity) and intensive (quality) margins of innovation by gender, as well as
women inventors’ educational attainment, relative to their male colleagues. These three
distinct moments provide insights into the salience of each distortion.

On the extensive margin, all barriers considered above shrink the pool of potential
women inventors. Yet, only the labor market tax distorts the intensive margin of research
labor supply. Indeed, by deterring women at the lower spectrum of inventive talent,
this distortion increases female research productivity through positive selection. While
the human capital barrier shares this selective mechanism, it also directly dampens
research productivity by discouraging the accumulation of skills required in inventive
careers. These counteracting selection and direct effects exactly offset one another to
leave female research productivity unchanged. Similarly, since exposure to innovation
is random and uncorrelated with research potential, it has no compositional effect on
the pool of inventive talent. In that sense, the human capital and exposure distortions
are observationally equivalent with respect to both margins of female research labor
supply. However, the key distinction lies in the fact that the human capital distortion
explicitly deters education, suggesting that women inventors would tend to achieve
lower educational attainment on average.

Therefore, with sensible empirical counterparts to both the extensive and intensive
margins of research effort as well as innovators’ educational attainment, one can hope
to shed light on the barriers faced by women inventors and discipline the model’s key
driving forces. The data on those first two moments comes from PatentsView, which
contains information on all patents granted by the U.S. Patent & Trademark Office
(USPTO) since 1976. PatentsView uses a series of disambiguation algorithms to uniquely
identify inventors over time and, most importantly, predict their gender from their first
name. Restricting on U.S.-based inventors delivers a large sample of 1.7M inventors
to whom 3.7M patents have been granted. For insights into researchers’ educational
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trajectories, I turn to the National Surveys of College Graduates (NSCG), narrowing the
sample to respondents primarily engaged in research and development (R&D).

Analysis of the data reveals a pronounced underrepresentation of women among
U.S. patent holders. However, when measuring inventive productivity–defined as the
number of patents granted within a year, weighted by their stock market valuations
(Kogan, Papanikolaou, Seru and Stoffman, 2017)–women display only a slight edge
over their male counterparts. Hence, the considerable scarcity of women in innovation
cannot solely be attributed to a labor market distortion that operates through positive
selection.3 Furthermore, the marginal difference in educational attainment between
male and female R&D professionals doesn’t support the possibility that a human capital
distortion, which deters educational pursuit, could play a prominent role.

Taking the theory to the data, I find that lifting all barriers to female inventorship
would increase U.S. income per person by 8.6% in the long run. Those economic gains
are almost entirely achieved by raising exposure to innovation for aspiring women
inventors. Indeed, to rationalize the disconcertingly skewed gender composition of U.S.
inventors with the fact that women and men in innovation are just as productive and
educated, I infer modest labor market and human capital distortions but large exposure
distortions. Moreover, I show that the rise in income per person mostly comes from
having better rather than more inventors.

From a social welfare perspective, eliminating distortions would be equivalent to
permanently raising everyone’s consumption by 2.7%. This figure comes shy of the long-
run increase in income per capita due to slow transition dynamics. Of this improvement
in welfare, 85% results from higher mean consumption while the remainder comes
from lower consumption inequality. However, those gains are not evenly shared in the
economy. Carrying out our consumption-equivalent welfare calculation separately for
different demographic groups shows that future generations would experience a 3.6%
permanent increase in consumption, as opposed to a more modest 0.4% increase for
current cohorts. Zooming in on the current generation of inventors, women would see
their consumption rise by 2% while men would instead suffer a 1.5% decrease therein.

The rest of the paper is outlined as follows. In the remainder of this section, we
discuss the relevant literature. Section 2 presents the theoretical framework. Section 3
discusses the data on U.S. inventors and the model’s calibration. Section 4 presents the
results on the sources and macroeconomic implications of barriers to female innovation.
Section 5 proceeds with various theoretical extensions and Section 6 concludes.

3This empirical fact further discards several extensions to the theory such as gender differences in
inherited preferences for innovation or differential risk aversion between women and men when talent is
partly unobserved, which would also operate through selection.
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Related Literature

This paper relates and contributes to two growing strands of literature. The first is a
collection of studies on the macroeconomic consequences of talent misallocation. A
prominent example is Hsieh, Hurst, Jones and Klenow (2019) showing that convergence
in the gender and racial composition of the U.S. labor market between 1960 and 2010 is
responsible for as much as 40% of economic growth over that period. Hsieh and Moretti
(2019) and Bryan and Morten (2019) study the allocation of talent across geographic
locations and find that barriers to local migration can be a considerable drag on aggregate
productivity. Lagakos and Waugh (2013) and Buera, Kaboski and Shin (2011) argue
that selection on talent goes a long way in explaining the large productivity differences
across countries. Morazzoni and Sy (2022) focus on entrepreneurs to document that
financial frictions are particularly salient for women and that closing the gender gap
in credit access could deliver sizable economic gains. Chiplunkar and Goldberg (2021)
and Bento (2021) consider a larger set of barriers to female entrepreneurship and find
similarly large productivity and welfare gains from eliminating gendered distortions.

Closer to this paper are studies that focus on the allocation of inventive talent. Celik
(2022) argues that if inherited wealth is only weakly correlated with inventive ability,
the overrepresentation of inventors from wealthy backgrounds is indicative of talent
misallocation resulting from financial frictions. Akcigit, Pearce and Prato (2020) show
that when aspiring inventors face financial barriers to human capital accumulation,
education subsidies may be better suited than R&D tax credits in raising aggregate
productivity. Lehr (2023) argues that firms’ monopsony power over inventors can lead
to a substantial misallocation of R&D. Arkolakis, Lee and Peters (2020) and Prato (2021)
show that lifting immigration restrictions between Europe and the United States can
reallocate inventors to where they are most productive and propel knowledge diffusion.

Closest to our paper is Einiö, Feng and Jaravel (2022) who first document that
people from different social backgrounds and experiences produce innovations that are
more tailored to their own needs. Unequal access to the innovation system can thus
distort the direction of inventions, with potentially dire consequences for cost-of-living
inequality and economic growth. To quantify the latter, the authors develop a two-sector
endogenous growth model with heterogeneous consumer tastes and unequal access
to innovation across different socio-demographic groups (including gender). Through
the lens of this model, they find that barriers to female innovation are responsible for
an 18.2% difference in the cost of living between women and men, and reduce the rate
of economic growth by 1.4 percentage points. Our analyses are complementary as we
extend their theoretical framework to further account for labor market discrimination
and barriers to human capital accumulation for female inventors. Moreover, we propose
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a model of semi-endogenous growth with nontrivial transition dynamics due to the
gradual accumulation of ideas and physical capital accumulation, and an overlapping
generations structure. Hence, we find more modest effects of eliminating barriers to
female innovation on productivity growth and welfare. Yet, our framework abstracts
from the direction of innovation, which the authors show is an important margin in
their counterfactual experiments. In that sense, our analyses provide complementary
insights into the welfare consequences of unequal access to innovation by gender.

The second strand of literature to which this paper relates is the large body of
empirical evidence on gendered barriers to innovation. Carrell, Page and West (2010)
document that the findings of Bell et al. (2018) on the importance of having access to
relevant role models persist further down the pipeline. Indeed, they show that female
students are more likely to enroll in science and mathematics classes and go on to
graduate with a STEM degree when they are assigned to female professors. However,
Hunt, Garant, Herman and Munroe (2013) find that only 7% of the gender gap in
patenting can be explained by women’s lower probability of holding a STEM degree.
Ross et al. (2022) provide evidence that women are 59% less likely to be credited with
authorship on patents to which they contributed. When they do receive due credit,
Jensen et al. (2018) find that their applications are more likely to be rejected, those
rejections less likely to be appealed, and even for successful applications, women are
granted a lower fraction of their claims, receive fewer citations and their patents are
less likely to be maintained. This evidence is further supported by recent work from
Hochberg et al. (2023) who use state-of-the-art tools from machine learning to estimate
gender bias in patent citations. Kim and Moser (2021) document that, at the height of
the baby boom, mothers who chose a career in innovation were extremely positively
selected, patenting more than twice as much as women without children.

My contribution to this literature is threefold. First, I focus on a particularly large
and salient source of talent misallocation: the underrepresentation of women among
U.S. inventors. Women represent perhaps the largest pool of underutilized inventive
talent, suggesting that there is ample scope to expand aggregate research effort. Second,
I leverage detailed micro-level data on the universe of U.S. inventors to shed light on
the sources of barriers to female innovation. Instead of honing in on a particular friction
in isolation, I let the data speak through the lens of a unifying theory to compare those
barriers in common units. Such “apples to apples” comparisons are indispensable to
discriminate across competing theories and ultimately identify policy and research
priorities. Finally, the rich yet tractable general equilibrium framework developed in this
paper brings new insights to a largely empirical literature on female innovation. It plays
the role of a laboratory through which one can study the aggregate and distributional
implications of various policy interventions when price adjustments and transitional
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dynamics can play a first-order role.

2 Theory

In this section, I develop a theory of endogenous growth inspired by the seminal work of
Romer (1990) and Jones (1995). Central to this theory is the role played by the allocation
of inventive talent. The model combines several key ingredients: semi-endogenous
growth through an expanding measure of varieties, an overlapping generations structure,
physical and human capital accumulation, inventive talent heterogeneity, an irreversible
occupation choice and, most importantly, gendered barriers to innovation.

The order of exposition proceeds as follows. In Section 2.1, I present the economic
environment, devoid of distortions, laying bare the primitive driving forces of the model.
Sections 2.2 and 2.3 then introduce gendered barriers, describe individual decision
problems and characterize their aggregation. Finally, Section 2.4 defines the equilibrium
allocation and Section 2.5 discusses the intuition underlying the model.

2.1 Economic Environment

Population and Preferences

The economy is populated by a measure Nt of working individuals indexed by i and
their gender g ∈ {women, men}.4 In the spirit of Yaari (1965) and Blanchard (1985), the
working population features overlapping generations denoted by κ in which individuals
retire at rate d. New individuals enter employment at rate b to form the most recent
cohort such that the working population evolves as:

Ṅt = nNt where n = b − d > 0. (1)

Individuals have logarithmic preferences over consumption cit and isoelastic disutility
from pre-career schooling time si such that lifetime utility is defined as:

Ui =
∫ ∞

κ
e−(ρ+d)(t−κ) ln(cit)dt − βs1+ν

i (2)

where ρ > 0 is the pure rate of time preference, d reflects discounting from the stochastic
retirement rate, β > 0 measures the strength of preferences over pre-career leisure time
and ν > 0 is the inverse of the Frisch elasticity of schooling time.

4The population is composed of as many women and men.
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Technology

There are three sectors in the economy: the final, intermediate and research sectors. The
final sector uses a variety of intermediate inputs indexed by j to produce a final good Yt:

Yt =

(∫ At

0
y

σ−1
σ

jt dj
) σ

σ−1

(3)

where yjt is the quantity of intermediate j used in production, At is the measure of
existing varieties and σ > 1 is the elasticity of substitution between those varieties.
Each intermediate input is produced by a single firm from the intermediate sector using
physical capital k jt and production labor ℓjt:

yjt = kα
jtℓ

1−α
jt (4)

where α ∈ [0, 1] is the output elasticity of physical capital. However, before it can be
brought to market, a variety must first be discovered. This role is played by the research
sector, which combines research labor Rt with the existing stock of “ideas” At to develop
varieties that are entirely new to society:

Ȧt = Aϕ
t Rt. (5)

As discussed in Jones (1995), ϕ measures the strength of knowledge spillovers. If ϕ is
positive, the discoveries of yesterday make inventors more productive today. If instead
ϕ is negative, it becomes harder and harder to find new ideas (Bloom, Jones, Van Reenen
and Webb, 2020).

Occupations and Endowments

Individuals can be allocated to work in one of two occupations. A person can either
supply production labor as a worker or research labor as an inventor. Each person
is born with some innate inventive talent zi, drawn from a Pareto distribution with
cumulative distribution function G:

G(z) = 1 − z−θ (6)

where the shape parameter θ > 1 measures the degree of talent dispersion.

Upcoming cohorts must also allocate time si towards schooling to accumulate human
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capital hi before starting their career:

hi = sη
i (7)

where η ∈ (0, 1) measures the return to schooling. Since everyone is endowed with a
single unit of time in each period, a person either supplies hi units of production labor
as a worker or takes advantage of their talent to supply zi × hi units of research labor as
an inventor. Both types of labor are supplied inelastically.

Resource Constraints

The final good can either be invested in physical capital or spent on consumption, which
delivers the resource constraint:

K̇t + δKt + Ct ≤ Yt where Kt ≡
∫ At

0
k jtdj and Ct ≡

∫ Nt

0
citdi (8)

and where δ > 0 is the rate at which physical capital depreciates. The resource constraint
for research labor is:

Rt ≤
∫ Nt

0
1{i∈R}zihidi (9)

and the resource constraint for production labor is:

Lt ≤
∫ Nt

0
1{i∈L}hidi where Lt ≡

∫ At

0
ℓjtdj. (10)

The economic environment is summarized in Table 1.

2.2 Decision Problems

The Final Sector’s Problem

The final sector is assumed to be perfectly competitive on the final good and intermediate
input markets. Hence, it chooses how much of each variety to produce with as to
maximize profits while taking the measure of varieties At and prices as given:

max
yjt

{PtYt −
∫ At

0
pjtyjtdj}
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Table 1: The Economic Environment

(1) Ṅt = nNt Population

(2) Ui =
∫ ∞

κ e−(ρ+d)(t−κ) ln(cit)dt − βs1+ν
i Lifetime utility

(3) Yt = (
∫ At

0 y
σ−1

σ
jt dj)

σ
σ−1 Final good production

(4) yjt = kα
jtℓ

1−α
jt Variety production

(5) Ȧt = Aϕ
t Rt Variety creation

(6) zi ∼ Pareto(θ) Inventive talent

(7) hi = sη
i Human capital

(8) K̇t + δKt + Ct ≤ Yt Final good resource constraint

(9) Rt ≤
∫ Nt

0 1{i∈R}zihidi Research labor resource constraints

(10) Lt ≤
∫ Nt

0 1{i∈L}hidi Production labor resource constraint

where pjt is the price of intermediate input j and Pt is the price of the final good, which
is normalized to unity. This delivers the following demand functions:

yjt = Yt/pσ
jt.

The Intermediate Sector’s Problem

To hold a claim on a variety’s perpetual profits, an intermediate firm must first purchase
its patent from the research sector through free-entry. Once that firm holds a patent, it
engages in monopolistic competition on the market for intermediate inputs and perfect
competition in the physical capital and production labor markets. That is, it chooses
a price as well as physical capital and production labor to maximize profits πjt while
taking as given the demand for its variety, the rental rate of physical capital rt and the
wage paid to workers wL

t :

πjt = max
pjt,kjt,ℓjt

{pjtyjt − (rt + δ)k jt − wL
t ℓjt}.
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Intermediate firms thus set their price to a constant markup µ above marginal cost:

pjt = µ

(
rt + δ

α

)α ( wL
t

1 − α

)1−α

where µ ≡ σ

σ − 1

which implies that profits are perfectly symmetric across firms:

πjt =
Yt

σAt
∀j ∈ [0, At].

The Research Sector’s Problem

Similarly, the research sector is assumed to be monopolistically competitive in the market
for patents and perfectly competitive in the research labor market. Hence, it chooses a
patent price qt as well as research labor to maximize profits, while taking as given the
wage wR

t paid to inventors and the measure of varieties:

max
qt,Rt

{qt Aϕ
t Rt − wR

t Rt}.

This delivers the following research labor market clearing condition:

wR
t = qt Aϕ

t .

With free-entry among patent buyers, the research sector sets the price of a patent to
extract all possible rents from the commercialization of an invention, which corresponds
to the present value of a variety’s stream of future profits:

qt =
∫ ∞

t
e−
∫ t′

t rτdτπt′dt′.

The Individual’s Problem

Taking prices as given, the problem of an individual i is to select a career in which they
will choose consumption and schooling to maximize lifetime utility:

Ui = max
cit,si

∫ ∞

κ
e−(ρ+d)(t−κ) ln(cit)dt − (1 + τH

gκ)βs1+ν
i
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subject to the flow budget constraint:

ȧit =

rtait + (1 − τL
gt)w

R
t zihi − cit if i ∈ R

rtait + wL
t hi − cit if i ∈ L.

Here, ait is the financial wealth of individual i at time t with initial condition aiκ = 0. As
described in Section 1, the labor market and human capital distortions τL and τH are
intended to reflect different forms of discrimination based on gender, which may vary
across time. In particular, those distortions are normalized to zero within the production
sector, which is roughly equivalent to defining the distortions in the innovation sector
as relative to those that would be faced by production workers. This simple problem
structure implies that optimal consumption is proportional to total wealth (financial and
human) and satisfies the usual Euler equation:

cit =

(ρ + d)[ait + (1 − τL
gt)ω

R
t zihi] if i ∈ R

(ρ + d)(ait + ωL
t hi) if i ∈ L

and
ċit

cit
= rt − ρ − d

where ωo
t denotes the present value of the stream of future wages:

ωo
t ≡

∫ ∞

t
e−
∫ t′

t rτdτwo
t′dt′ ∀o ∈ {R, L}.

Hence, at any point in time, a person expects current distortions to prevail for the rest
of their career. In that sense, individuals have perfect foresight over all future prices
conditional on current distortions remaining constant forever.

New cohorts receive no inheritance and choose how much time to allocate towards
schooling before entering employment. Over time, individuals accumulate savings to
eventually retire and consume their remaining financial wealth in retirement. Hence, a
person’s expected consumption in period t from the point of view of period κ is:

cit =

(ρ + d)(1 − τL
gκ)ω

R
κ zihie

∫ t
κ (rτ−ρ−d)dτ if i ∈ R

(ρ + d)ωL
κ hie

∫ t
κ (rτ−ρ−d)dτ if i ∈ L.

Substituting this expression in the definition of lifetime utility and choosing schooling
time to maximize it delivers:

si =

[β(1 + ν)(ρ + d)(1 + τH
gκ)/η]

−1
1+ν if i ∈ R

[β(1 + ν)(ρ + d)/η]
−1

1+ν if i ∈ L.
(11)
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Schooling time is unsurprisingly decreasing in the human capital distortion, which
raises disutility from education. Substituting this optimal choice back into the definition
of lifetime utility as perceived from period κ, we have that:

Ui =

ln[(1 − τL
gκ)(1 + τH

gκ)
−η
1+ν × ωR

κ × zi] + const. if i ∈ R

ln(ωL
κ ) + const. if i ∈ L.

Some individuals, irrespective of their talent, might never encounter the opportunity
to become inventors. In this context, only those exposed to innovation can opt for it as a
career path. Drawing from Bell, Chetty, Jaravel, Petkova and Van Reenen (2019), this
exposure is modeled as a Bernoulli random variable ei with mean parameter 1 − τE

gκ ∈
[0, 1]. The distortion τE

gκ reduces the proportion of individuals from cohort κ and gender
g who can consider research as a career option. Conditional on receiving exposure to
innovation, a person then decides whether to pursue research or work in production
depending on which of those two occupations promises the highest lifetime utility. This
occupation choice is made once and is irreversible thereafter. Thus, an individual will
opt for research if and only if their inventive talent exceeds the threshold zgκ:

zgκ ≡
(1 + τH

gκ)
η

1+ν

1 − τL
gκ︸ ︷︷ ︸

Distortions

× ωL
κ

ωR
κ︸︷︷︸

Wages

. (12)

This selection threshold clearly illustrates how larger distortions effectively “raise the
bar” differentially by gender, whereas a lower stream of relative future wages does so
uniformly. That is, only the most talented people find it worthwhile to pursue research
despite being paid below their marginal product, without adequate human capital,
strictly because of their gender.

2.3 Aggregation

Having described individual decisions, let us now consider their aggregation. This
section delves into how distortions impact both the quantity (extensive margin) and
quality (intensive margin) of the overall research labor supply.

The Extensive Margin

The quantity of inventors by demographic group is obtained by aggregating individual
occupation decisions. Accordingly, the fraction of individuals from gender g and cohort
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κ who go on to invent is given by:

P(zi ≥ zgκ ∩ ei = 1) =
(1 − τE

gκ)(1 − τL
gκ)

θ

(1 + τH
gκ)

θη
1+ν︸ ︷︷ ︸

Distortions

×
(

ωR
κ

ωL
κ

)θ

︸ ︷︷ ︸
Wages

(13)

This equation reflects the fact that a high-paying occupation will attract more people
irrespective of gender, whereas distortions are solely responsible for gender differences
in occupation choices. In contrast, the selection threshold zgκ is entirely independent of
exposure draws and instead strictly captures the trade-offs faced by someone deciding
whether to pursue research rather than production. Notice that the fraction of inventors
in a demographic group is inversely related to this threshold with elasticity θ. In fact,
for large values of θ, the distribution of talent is tightly compressed around the selection
threshold such that small changes in this cutoff induce large flows across occupations.

The Intensive Margin

Since career choices follow a cutoff rule on inventive talent, distortions may not only
affect the quantity of inventors but also the quality of the resulting pool. Taking the
product of talent and human capital and integrating over the resulting distribution
delivers an expression for the average supply of research labor in cohort κ and gender g:

E[zi × hi|zi ≥ zgκ ∩ ei = 1] ∝
ωL

κ

(1 − τL
gκ)ω

R
κ

. (14)

The average quality of inventors in that group is inversely proportional to the “keep
rate” of the labor market tax. This reflects the selection mechanism. That is, if women
inventors were only paid a fraction of their marginal product, only the very best would
earn enough to prefer a career in research over one in production. Notice also that
the human capital distortion does not appear in this expression. Indeed, more severe
barriers to education give rise to positive selection, but they also directly hamper human
capital formation, thus depressing research productivity. Altogether, the selection effect
through talent and the direct effect through human capital exactly offset to leave the
average productivity of inventors unchanged.
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2.4 Equilibrium Allocation

Now that all decision problems, as well as their aggregation have been described, we
can define the concept of an equilibrium allocation along a transition path.

Given time paths for distortions, an equilibrium consists of time paths for allocations
and prices such that for all t:

1. {{cit, si}Nt
i=0}t and the occupation choice solve the individual’s problem.

2. {{yjt}At
j=0}t solve the final sector’s problem.

3. {{pjt, k jt, ℓjt}At
j=0}t solve the intermediate sector’s problem.

4. {qt, Rt}t solve the research sector’s problem.

5. {At}t is given by equation (5).

6. {Nt}t is given by equation (1).

7. {Kt, Yt, Ct}t satisfy the final good’s resource constraint.

8. {{pjt}At
j=0}t clear the intermediate input markets.

9. {rt}t clears the asset market:
∫ Nt

0 aitdi = Kt + qt At.

10. {wL
t , wR

t }t clear the production and research labor markets.

2.5 Discussion

It is worth taking a step back at this point to discuss how distortions and parameters
interact to drive the key mechanisms of our theory. To do so, let us start by reviewing the
model’s three sources of distortions. At the individual level, τL and τH distort the payoff
to inventions differentially by gender, and since occupation choices follow a cutoff rule
on talent, these distortions mostly influence the career choice of marginally talented
individuals who are on the fence of the selection threshold. This is precisely where the
sharp distinction with the exposure distortion resides. Echoing the arguments in Bell
et al. (2018), a lack of exposure to inventive careers can deny opportunities to even the
most talented aspiring inventors, which is what makes it particularly damaging.

At the aggregate level, all three sources of distortions either discourage or outright
prevent women from pursuing innovation. However, as seen from equation (14), only
the earnings tax distorts the quality of the resulting pool. Indeed, this tax effectively
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raises the talent threshold above which it becomes worthwhile to pursue innovation.
This selection process raises research productivity by driving out the marginal inventors.
The human capital distortion operates through that very same selection mechanism.
However, it also directly depresses research productivity by discouraging all inventors
from acquiring the skills and knowledge they need to innovate. Overall, these selection
and direct effects exactly offset, thus leaving the quality of the inventive pool unchanged.
Finally, since exposure to innovation is random and assumed to be uncorrelated with
innate ability, it has no compositional effect through talent.

This discussion so far summarizes the qualitative implications of each distortion,
but their quantitative relevance is mediated by the parameters of the model. Several
parameters are particularly important: the cohort entry and exit rate b and d, the shape
parameter θ of the talent distribution, the economy’s overall degree of increasing returns
to scale (here denoted by γ), and the strength of knowledge spillovers ϕ.

The Demographic Parameters.—b and d are most critical in quantifying the welfare
implications of distortions. Since occupation choices are assumed to be irreversible,
distortions follow individuals over their entire careers. Hence, one can think of b and d as
effectively measuring the degree of churning in the economy, which directly influences
the speed of transition dynamics. In other words, if old distorted cohorts “stick around”
for too long, the economic gains from lifting distortions might only unfold in the distant
future. Further, conditional on particular values of b or d, population growth (n = b − d)
influences the rate at which those gains are discounted back to the present in that it tells
us how many people will populate the future and enjoy the higher standards of living.

The Talent Parameters.—A fundamental insight of endogenous growth theory is that
there exists an intertemporal trade-off in allocating resources between production and
research. The former delivers higher consumption today, while the latter promises even
more consumption tomorrow. In our framework, the key resource to allocate is people
who differ in their research productivity. This talent heterogeneity matters in that it
dictates the degree to which it is possible to “economize” on inventors. Put differently,
if we only needed to allocate the brightest and most creative people toward research,
there would be more workers left to produce existing varieties. This is precisely where
the parameter θ comes into play, which measures the degree of dispersion in research
productivity. For lower values of θ, the distribution of talent admits a fatter right tail
such that eliminating barriers to female innovation entails the reallocation of just a
few star researchers. If we only needed the Gerty Coris, Gertrude Elions and Jennifer
Doudnas of this world to dedicate their extraordinary talent to research, there would be
more people left to help turn their ideas into widely available goods and services.

Increasing Returns to Scale.—As elegantly described in Romer (1990), the nonrivalry of

17

https://en.wikipedia.org/wiki/Gerty_Cori
https://en.wikipedia.org/wiki/Gertrude_B._Elion
https://en.wikipedia.org/wiki/Jennifer_Doudna
https://en.wikipedia.org/wiki/Jennifer_Doudna


ideas gives rise to increasing returns to scale. More concretely, in any idea-based growth
theory, income per person yt, in the long run, is roughly proportional to the effective
number of researchers Rt raised to some power γ:

yt ∝ Rγ
t

where γ > 0 measures the degree of increasing returns to scale. Intuitively, γ tells us the
extent to which inventors matter as a propelling force for our living standards. To put
it into perspective, if we were to double the number or quality of researchers, income
per person would approximately rise by a factor of 2γ. This simple example goes to
illustrate how quantitatively critical is the degree of increasing returns to scale for our
counterfactual exercises. In our theory, γ is a combination of parameters described by:

γ ≡ 1
(1 − α)(σ − 1)(1 − ϕ)

.

Knowledge Spillovers.—Finally, even conditional on a particular value for the degree
of increasing returns to scale, the knowledge spillover parameter ϕ has nontrivial impli-
cations for the dynamics of allocative efficiency. If inventors “stand on the shoulders of
giants” (ϕ > 0) but we somehow fail to take advantage of our current talent pool, not
only do we miss out on new ideas that would improve all of our lives today, but we also
prevent future generations of inventors from building on those ideas. This means that
even if we could fix the allocation of talent in a snap of fingers, misallocation from the
past could still cast a long shadow over our future economic well-being. In contrast, if it
is harder and harder to find new ideas (ϕ < 0) as emphasized in Bloom et al. (2020), that
past misallocation could be a silver lining for future economic growth. Indeed, it would
suggest that some of our best ideas are still out there waiting to be discovered. Atkeson,
Burstein and Chatzikonstantinou (2019) and more recently Jones (2021) provide a more
comprehensive analysis and discussion of the role of knowledge spillovers in transition
dynamics.

3 Quantification

Let us now discuss how sensible empirical counterparts to the extensive and intensive
margins of inventive effort, as well as educational attainment by gender can be used to
quantitatively discipline the model’s key driving forces and help us shed light on the
barriers faced by women inventors. The data underlying the analysis is first described,
after which I discuss the model’s parameterization.
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3.1 Data

To take our theory to the data, the first question we ought to ask ourselves is: who
should be defined as an inventor? In practice, one is spoiled for choice from a plethora
of conceivable definitions: scientists, engineers, entrepreneurs, GitHub developers, or
even artificial intelligence algorithms. This choice is, however, far from obvious as it
is notoriously hard to track inventions and their origins. With this caveat in mind, I
follow a long tradition in the literature and focus on U.S. patent grantees, on whom a
vast amount of information is publicly available.

Hence, the data used in our application comes from PatentsView, which contains
information on all utility patents granted by the U.S. Patent & Trademark Office (USPTO)
since 1976. PatentsView uses a series of algorithms to uniquely disambiguate inventors
over time and, most importantly, predict their gender from their first name.5 The sample
I consider is restricted to inventors residing in the U.S. to whom gender is successfully
attributed. With those restrictions, there remain about 1.7 million inventors to whom 3.7
million patents have been granted.

The Extensive Margin

Figure 1(a) shows that in 1976, 4% of inventors were women, and by 2020, that fraction
had only inched up to 12%.6 Although the representation of women in U.S. inventorship
did increase by a factor of three over the last 40 years, it remains disconcertingly low. As
a reference point, Figure 1(b) plots the same series but for lawyers, doctors, and engineers
in the U.S. Censuses and American Community Surveys (ACS). Women respectively
composed 6% and 11% of lawyers and doctors in 1970, with those figures both climbing
to about 40% in 2020. In contrast, there has been much less convergence in the gender
composition of engineers, where women were and are still vastly underrepresented at
2% of the profession in 1970 and only 15% in 2020.

Figure 2 plots the previous series, but by cohort instead of year.7 Here, an inventor’s
cohort is defined as the year of first appearance in the data, and since the PatentsView
data starts in 1976, cohort inference is restricted to inventors who first appear after
1986. This figure shows that convergence is slowly but clearly underway as new cohorts
composed of more women gradually replace previous ones.

However, as evident in Figure 3, there is a nontrivial degree of heterogeneity in the

5For more information on the gender attribution algorithm used by PatentsView, see https://
patentsview.org/gender-attribution.

6In this plot and hereafter, years correspond to the date at which a patent is granted.
7Cohorts are grouped in 5-year periods indexed by their ending year.
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Figure 1: Representation of Women in Different Occupations
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Note: The share of women among U.S. inventors has been slowly but steadily increasing from 4% in
1976 to 12% in 2020. This path resonates with the experience of women engineers in those same years
but is in sharp contrast with the much faster convergence that occurred in the legal and medical
professional spheres. Author’s calculation from the U.S. Censuses and ACS.

Figure 2: Female Share of Inventors by Cohort
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Note: The fraction of women in the 1990 cohort of U.S. inventors was 7.5%
and now stands at 17.6% among the 2020 cohort. Cohorts are grouped in
5-year periods indexed by their ending year.

gender composition of different technological fields.8 In that figure, technological fields

8Those broad fields are defined according to the single digit classes of the Cooperative Patent Classifi-
cation (CPC) system, with the exception that the “textiles and paper” and “fixed constructions” classes are
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are divided in two groups, as shown in panels 3(a) and 3(b): fields where women have
been relatively more and less represented over our sample period. To highlight the
two most contrasting examples, between the 1990 and 2020 cohorts, the female share
of inventors went from 13% to 28% in the field of chemistry and metallurgy, and from
5% to 10% in the field of fixed constructions and mechanical engineering. Section 5
quantitatively explores the role of this heterogeneity across technological fields.

Figure 3: Female Share of Inventors by Technological Field
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Note: Between the 1990 and 2020 cohorts, the female share of inventors in the field of chemistry and
metallurgy has grown from 13% to 28%. In contrast, it went from 5% to 10% in the field of fixed
constructions and mechanical engineering.

The Intensive Margin

As mentioned above, a notable feature of the PatentsView data is its state-of-the-art
disambiguation procedure. It allows us to uniquely identify inventors across multiple
patent issues to measure the number of patents granted to each of them every year.
However, simple patent counts might only deliver a partial depiction of individual
inventive productivity, as it has long been recognized that not all patents are invented
equal (Griliches, 1990). Then, which proxy of a patent’s quality should we consider? A
familiar candidate is the number of citations received by a patent, but one might raise
doubts on whether this is the right choice in the context of a study focused on gender.
After all, citations are deliberately chosen by applicants and examiners who are not
insusceptible to their own gender biases.

respectively grouped with the “human necessities” and “mechanical engineering” ones.9 In particular, an
inventor’s field is here defined as the modal CPC class across all patents they have been granted over
their career.
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A plausible instance of such biases is documented by Jensen et al. (2018) looking at
U.S. patents by lone inventors. They show that among inventors with relatively common
forenames (where gender is easily inferred), women are cited 30% less frequently than
men. Conversely, among inventors with rare first names, this pattern is completely
reversed, with women being cited 20% more frequently than men.10 A caveat of this
exercise is that it could, in principle, reflect differential gender selection into inventorship
for domestic and foreign applicants. Yet, citations are not the only margin on which
women might be denied credit for their scientific contributions. Indeed, Ross et al. (2022)
show that women are 59 percent less likely to be attributed authorship on patents to
which they contributed. This suggests that the PatentsView data might be missing a
nontrivial fraction of the female inventor population.

To better gauge the value of each patent, I instead weigh them by their economic
significance as reflected in stock market reactions to patent grant announcements.11 This
valuation approach, introduced by Kogan et al. (2017), offers an economically sound
perspective on the valuation of innovations, bridging scientific significance with market
relevance. Critically, by grounding comparisons in stock market valuations rather than
subjective interpretations, it offers a safeguard against potential biases and thus yields a
more impartial evaluation of a patent’s worth. To further refine this valuation, I adjust
the measure for systematic valuation differences across fields using 3-digit CPC class
fixed effects and account for the individual contribution of an inventor by controlling
for co-inventorship team size.

Next, we must aggregate value-weighted patents at the level of inventors. To do
so, we first take the sum of all value-weighted patents for each inventor in each year,
conditioning on differences in patenting rates across 3-digit CPC classes. This delivers a
measure of annual inventive output for each inventor in our sample and for all years
in which they appear in the data. Then, to condense those multi-year observations to a
single number, we first purge them from experience fixed effects, where experience =

year − cohort. This is consistent with the model being silent on the life-cycle of inventive
productivity. Then, we take the average across years for each inventor to obtain the key
empirical counterpart to individual inventive productivity in our theory.

Figure 4 plots the distribution of individual inventive output by gender from two
angles. The histogram depicted in Panel 4(a) illustrates the striking similarity in the
distribution of inventive productivity between genders. Meanwhile, Panel 4(b) offers a
complementary perspective by charting the female share of top inventors by cohort for

10These estimates not only condition on technological fields but also on forename frequency to control
for any association between the rarity of an inventor’s name and citations received.

11We find similar results using either truncation-adjusted forward citations or the notion of a patent’s
importance as proposed by Kelly, Papanikolaou, Seru and Taddy (2021).
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different productivity quantiles. Although women are slightly overrepresented among
the upper echelons of inventors, the discrepancies in representation across productivity
tiers are remarkably small.

Figure 4: Distribution of Individual Inventive Productivity by Gender
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Note: As evident in these panels, women are only slightly overrepresented among top inventors.

As depicted in Figure 5, female inventors only exhibit a marginal productivity edge
over their male counterparts. To be more specific, this figure plots the gender gap in
inventive output–with a positive gap revealing a productivity advantage by women–
controlling for technological fields.12

Educational Attainment

Earlier discussions highlighted the implications our model carries concerning the relative
educational attainment of female and male innovators. However, a shortcoming of the
PatentsView data is its lack of details on inventors’ educational backgrounds. To the best
of my knowledge, the most notable attempt at bridging this gap using publicly available
data is from Hunt et al. (2013). They use the 2003 wave of the National Survey of College
Graduates (NSCG), which recorded whether respondents were granted a patent in the
last five years, and find that only 7% of the gender gap in patenting can be accounted
for by women’s lower propensity to hold a STEM degree.13 Instead, they show that 78%
and 15% of the gap are due to gender differences in patenting among those with and
without a STEM degree, respectively.

12Notably, when analyzing these outcomes across individual technological domains, the variations are
remarkably subtle.

13The survey only asked this question in the 1995 and 2003 waves.
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Figure 5: Inventive Productivity Gender Gap
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Note: Female inventors exhibit a modestly higher productivity relative to
their male colleagues. The shaded area corresponds to the 95% confidence
interval around the estimates.

To approximate the educational attainment gender gap among innovators over a
more extensive time range, I use data from the NSCG between 1993 and 2019. More
specifically, I restrict the sample to employed individuals between 30 and 34 years old
whose main work activity is R&D.14 Figure 6 plots the fraction of R&D workers in three
educational attainment tiers over time for women and men. The standout observation
here is how strikingly similar the two distributions are. Between 1993 and 2019, women
and men in R&D consistently seemed to achieve the same educational attainment.

3.2 Calibration

Our model features eighteen parameters to be determined, of which three are set to
standard values in the literature. The pure rate of time preference ρ is set to 0.02, the
Cobb-Douglas parameter for physical capital α is set to 1/3, and a 5% depreciation rate
δ is assumed. Turning to the demographic parameters, the retirement rate d is set to
1/30 to match an expected work-life of 30 years (reflecting the prime-age interval of
25 to 54 years old), and the cohort arrival rate b is correspondingly chosen to achieve a

14As mentioned above, in the 1995 and 2003 waves of the survey, respondents were asked about their
patenting record and 71% and 47% of patentees reported R&D as their main work activity, respectively.
Moreover, in those same two waves, R&D workers were 4.6 and 5.3 times more likely to patent than the
average respondent.
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Figure 6: Educational Attainment of R&D Workers by Gender
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Note: This figure plots the fraction of employed R&D workers between 30 and 34 years old in each
educational attainment category by gender and year. Author’s calculation from the NSCG.

population growth of 0.5% per year, as projected by the U.S. Census Bureau until 2060.

To calibrate the human capital parameters, I assume that the pre-career period spans
25 years, which can either be spent on leisure or schooling. The schooling disutility
parameter β is therefore set to 46.8 to match the 15.9 years of education that could be
expected in the U.S. between 1990 and 2019 from the United Nations Development
Program. The parameter η is chosen to approximate a Mincerian return to schooling
of 10% around expected years of education, which is somewhere in the middle of the
range of values reported in Card (1999).

We saw in Section 2.3 that the distribution of individual research labor supply follows
a power law with tail exponent θ. Under perfectly competitive labor markets, individual
research earnings also follow a power law with the same tail exponent. Hence, one can
hope to recover θ from the empirical tail exponent of either of those two distributions.
On one end, Bell et al. (2019) link patent records to tax records from 1999 to 2012 and
estimate a tail exponent of 1.26 for the inventor earnings distribution. On the other,
estimating the productivity distribution’s tail exponent from value-weighted patents
following the methodology of Clauset, Shalizi and Newman (2009) delivers a larger
figure of 3.25.15 In light of this uncertainty, I assume an intermediate value of θ = 2, but
Section 4.3 shows robustness to a relatively wide range of alternative values.

Finally, the knowledge externality parameter ϕ is set to -2.1, corresponding to the
estimate of Bloom et al. (2020) for the aggregate U.S. economy, and the elasticity of
substitution across varieties σ is set to 2.45 to target a degree of increasing returns to

15This is implemented with the powerlaw Python package of Alstott, Bullmore and Plenz (2014).
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scale of one third, as suggested by Jones (2021). Notice that the chosen value for ϕ

embraces the view that “ideas are getting harder to find”. The calibration of the model
is summarized in Table 2.

Table 2: Calibration

Parameter Symbol Value Source

Discount rate ρ 0.02 Standard calibration

Cobb-Douglas α 1/3 Standard calibration

Depreciation rate δ 0.05 Standard calibration

Retirement rate d 1/30 Average work-life of 30 years

Entry rate b d + 0.05 0.5% U.S. population growth

Schooling disutility β 46.8 15.9 expected years of schooling

Return to schooling η 1.59 10% Mincerian return

Pareto shape θ 2 Assumption

Knowledge spillover ϕ -2.1 Bloom et al. (2020)

Variety substitution σ 2.45 Degree of IRS = 1/3

4 Results

We now have all the necessary ingredients to answer the two central questions of the
paper: (1) What are the most salient barriers faced by women in innovation? and (2)
How costly is the resulting misallocation of inventive talent for aggregate productivity
and welfare? In Section 4.1, I first explain how moments in the data can be projected
through the lens of our model to infer its three sources of distortions, and in Section
4.2, I quantify the macroeconomic implications of eliminating all barriers to female
innovation.
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4.1 Inferring Distortions

To infer the model’s three sources of distortions, I leverage cohort-level moments on (1)
the intensive and extensive margins of inventive effort by gender and (2) the educational
attainment gender gap among U.S. R&D workers.

Labor Market Distortion

Looking back at Section 2.3, we saw from equation (14) that the average supply of
research labor from cohort κ and gender g is inversely proportional to the “keep rate” of
the corresponding labor market tax:

E[zi × hi|zi ≥ zgκ] ∝
1

1 − τL
gκ

. (15)

Equation (15) then implies that the labor market distortion can be directly inferred from
the gender gap in average inventive output by cohort, as plotted in Figure 5. Panel 7(a)
plots the inferred labor market tax, where two observations emerge. First, its magnitude
is relatively subdued across all cohorts, which suggests that the large representation
gender gap documented in Figure 1(a) cannot be rationalized by this distortion alone.
Second, the labor market tax has been declining over time, although modestly, which is
consistent with evidence from other occupations (Hsieh et al., 2019).

Human Capital Distortion

Equation (11) of Section 2.2 implies that the fraction of time spent on schooling by
someone from cohort κ and gender g is also inversely proportional to the corresponding
human capital distortion:

si ∝
1

1 + τH
gκ

. (16)

Therefore, if we were to observe inventors’ schooling trajectory, we could readily infer
human capital distortions from the educational attainment gender gap. Unfortunately,
as discussed earlier, such data is not publicly available. Hence, to approximate the
educational attainment gender gap among innovators, I instead use data from the NSCG
between 1993 and 2019. To translate educational attainment categories to completed
years of education, I assume that a bachelor’s, master’s, and professional or doctorate
degree is equivalent to 16, 18, and 22 years of education, respectively. The derived
human capital distortion can be seen in Panel 7(a). Similar to the labor market distortion,
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the magnitude of the human capital distortion is relatively minor, with female and male
R&D professionals attaining comparable educational levels throughout the sample.

Figure 7: Inferred Distortions
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Note: Since women and men inventors are similarly productive and educated, I infer modest labor
market and human capital distortions. In contrast, the exposure distortion is considerable, but
unwaveringly declining over time.

Exposure Distortion

Given other distortions and parameter values, the exposure barrier is inferred from the
gender ratio in the proportion of inventors. As we saw in Section 2.3, the fraction of
inventors among gender g and cohort κ is proportional to:

P(zi ≥ zgκ ∩ ei = 1) ∝
(1 − τE

gκ)(1 − τL
gκ)

θ

(1 + τH
gκ)

θη
1+ν

The empirical counterpart to that fraction is calculated as the total number of inventors
from gender g and cohort κ in the PatentsView data, divided by the labor force of gender
g aged 25 to 35 in year κ of the Current Population Survey (CPS). This denominator
accounts for gender differences in labor force participation during our sample period,
on which our theory is silent.

Figure 7(b) plots the inferred exposure distortion faced by aspiring women inventors
of each cohort. This distortion is strikingly large and stands in sharp contrast with
the previous two. But this magnitude is perhaps not so surprising. Since female and
male inventors are just as productive and educated, only a large barrier that does not
operate through selection or human capital can rationalize the vast underrepresentation
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of women in research.

4.2 Eliminating Distortions

How “costly” are the barriers to female innovation and the resulting misallocation of
inventive talent for U.S. aggregate productivity and welfare? To answer this question, a
natural counterfactual exercise is to lift all distortions faced by women inventors starting
in 2020 and compare the economy’s transition path to its initial balanced growth path
allocation.16 Note that this starting point is consistent with the distortions inferred for
the most recent cohort in Section 4.1.

Aggregate Productivity

Panel 8(a) shows that a simultaneous withdrawal of all distortions would raise income
per person by 8.6% in the long run. Although relatively large, this productivity gain
is very slow to materialize, with a half-life of a little under a century. This inertia is
consistent with the findings of Atkeson et al. (2019) who study the transitional dynamics
of a large class of semi-endogenous growth models with a gradual accumulation of
physical capital and ideas. On top of these two forces, our theory further admits an
overlapping generations structure with irreversible occupation choices, which directly
slows down the reallocation of labor.

This labor reallocation is depicted in Panel 8(b), which plots the path of aggregate
research labor by gender in percentage deviation from their starting point. The supply
of research labor by women more than triples, while that of men shrinks by almost
a quarter. In aggregate, research labor permanently increases by 28% within the first
50 years of the transition. As discussed in Section 2.5, raising this factor of 1.28 to the
power of γ = 1/3 (the degree of increasing returns to scale) approximately recovers our
long-run gain in income per person of 8.6%.

However, is this gain achieved by having more or better inventors? Figure 9 reveals
the answer by tracing the path of the extensive and intensive margins of research labor.
More specifically, Panel 9(a) plots the fraction of inventors in each gender group. About
0.47% of women are inventors in 2020, with that fraction ultimately rising to 1.22%
after 250 years.17 Marginally talented men are instead being gradually pushed out of

16The model’s transition path is solved using the Relaxation Algorithm developed by Trimborn, Koch
and Steger (2008). For additional information on its implementation, see https://sites.google.com/view/
relaxmacro.

17The average share of researchers in the U.S. stood at almost 1% in 2020, which is not too far from
what is suggested by the model even though this moment is not explicitly targeted in the calibration
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Figure 8: Income Per Person and Aggregate Research Labor
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(b) Aggregate Research Labor

2020 2070 2120 2170 2220 2270
-50

0

50

100

150

200

250

300

350

%

1.28x

0.77x

3.74x
Women

Men

All

Note: Removing all barriers to female innovation could increase income per capita growth by about
4 basis points over the next century.

inventorship as older cohorts retire, culminating in a balanced gender representation
across professions. Interestingly, the aggregate share of inventors barely rises in the long
run, suggesting that most of the productivity gains from lifting distortions are achieved
on the intensive margin.

Figure 9: The Extensive and Intensive Margins of Aggregate Research Labor

(a) Extensive Margin
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(b) Intensive Margin
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Note: The number of women inventors almost triples, while it shrinks by almost 40% for men.
However, both gender groups become more productive on average as they face more intense
competition from a larger pool of talented women.

(see https://data.oecd.org/rd/researchers.htm). According to the 2015 Frascati Manual, researchers are
defined as “professionals engaged in the conception or creation of new knowledge, products, processes,
methods and systems, as well as in the management of the projects concerned”.
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To drive this point home, Panel 9(b) plots the transition path of average inventive
productivity by gender, in percentage deviation from its starting point. This figure
leaves no doubt that, in aggregate, the large increase in research labor is unfolding
through the intensive rather than the extensive margin. However, a closer look at the
dynamics within gender groups reveals more nuance. For women, only 16% of the near
4-fold rise in research labor is coming from the intensive margin. In comparison, the
decline in male research labor is entirely driven by their shrinking numbers, despite the
counteracting rise in their average productivity from tougher competition.

Welfare

To assess the welfare implications of eliminating all distortions, define the following
utilitarian social welfare function as in Calvo and Obstfeld (1988):

Wt(λ) =
∫ ∞

t
e−(ρ−n)(τ−t)

∫ τ

−∞
be−b(τ−κ)E[ln(λ × ciτ)]dκdτ

where the term involving pre-career schooling is ignored as it delivers the same disutility
to everyone, regardless of distortions. In this expression, the fraction of people from
cohort κ at time τ is given by be−b(τ−κ), the expectation is taken over individuals within
cohorts, and λ > 0 permanently multiplies the consumption of every person. Note that
by changing the order of integration, we can additively separate the social welfare of
surviving and future cohorts:

Wt(λ) =
∫ t

−∞
be−b(t−κ)

∫ ∞

t
e−(ρ+d)(τ−t)E[ln(λ × ciτ)]dτdκ Surviving cohorts

+
∫ ∞

t
be−(ρ−n)(κ−t)

∫ ∞

κ
e−(ρ+d)(τ−κ)E[ln(λ × ciτ)]dτdκ Future cohorts.

With these definitions, we can ask: by what factor λ must we permanently adjust the
consumption of everyone in a distorted economy to leave them as well off as if they
spent the rest of their lives in an undistorted economy? The answer satisfies:

Wt(λ) = W∗
t (1)

where Wt and W∗
t denote social welfare in the distorted and undistorted economies,

respectively. More precisely, the distorted economy is and remains on its balanced
growth path, characterized by the distortions inferred for the 2020 cohort. Instead, the
undistorted economy starts from that same initial point but is launched on a transition
path thereafter.
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This exercise reveals that removing barriers to female innovation would be equivalent
to permanently raising everyone’s consumption by 2.7%. That figure is notably lower
than the long-run income per person gain of 8.6% for two reasons. First, the transition
is very slow, meaning that the higher standards of living will mostly materialize in a
remote future. Second, because U.S. population growth is projected to be quite slow as
well, those future gains must be discounted back to the present at a relatively high rate.

Of this 2.7% consumption-equivalent welfare variation, 85% comes from higher
mean consumption, while the rest comes from lower consumption inequality. This
does not imply, however, that those gains are evenly shared in the economy. Indeed,
carrying out this welfare calculation separately for different demographic groups shows
that removing all distortions is equivalent to a 3.6% increase in consumption for future
cohorts, as opposed to a more modest 0.4% increase for surviving cohorts.

Notably, the current generation of female inventors stands to gain significantly, with
a potential 2% increase in their consumption-equivalent welfare. On the flip side, not
everyone benefits: surviving cohorts of male inventors would face a 1.5% decline in
their consumption. Those distributional consequences should remind us that when the
costs of an intervention are concentrated and borne today, while its benefits are diffuse
and materialize tomorrow, we ought to think carefully about its implementability.

4.3 Robustness to Parameter Values

In this section, our main findings are revisited with alternative parameter values. In
particular, I discuss their robustness to the degree of increasing returns to scale γ, the
shape parameter θ of the inventive talent distribution, the demographic parameters
b and d, and the knowledge spillover parameter ϕ. Note here that for consistency, I
re-calculate the exposure distortion when varying parameter values.

As discussed in Jones (2021), the overall degree of increasing returns to scale in the
economy is both notoriously challenging to measure and fundamental in providing
practical answers to some of our most pressing macroeconomic questions. Despite the
sparsity of empirical work on the matter, there have been some valuable quantification
attempts. Jones (2002) estimates values ranging from about 0.05 to 0.33 through a
time-series econometric analysis. Peters (2021) instead leverages the pseudo-random
resettlement of 8 million ethnic Germans into West Germany after the Second World
War to estimate a value of nearly 0.6. Given this wide range of estimates, Panel 10(a)
plots the long-run percentage gain in income per capita after eliminating all distortions,
which ranges from about 1% to almost 16% for γ going from 0.05 to 0.6.

The research productivity shape parameter θ is similarly relevant and challenging
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Figure 10: Long-Run Gain in Income per Person: The Role of γ and θ
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Note: The dots correspond to the long-run gain in income per person of 8.6% from our baseline
calibration with γ = 1/3 and θ = 2.

to determine accurately. Indeed, it is quantitatively relevant in that it determines the
extent to which one can “economize” on the number of inventors by taking advantage
of the extraordinary talent of a few star researchers. However, several obstacles cloud
its precise estimation: (1) directly gauging individual research productivity presents a
complex endeavor, and (2) inventor wages might not be dictated by perfect competition
(Lehr, 2023). Nevertheless, Panel 10(b) reveals that the long-run productivity gain from
lifting all distortions ranges from a little over 14% to about 3% when θ goes from 1.26
to 5. The lower bound of this range is borrowed from Bell et al. (2019), who estimate a
tail exponent of 1.26 for the inventor earnings distribution between 1999 and 2012. The
upper bound is instead chosen to be slightly larger than the tail exponent of the research
productivity distribution (as measured from value-weighted patents), which I estimate
to 3.25 following the methodology of Clauset et al. (2009).

The last set of parameters to which I assess robustness are those that speed up or slow
down the transition toward a new balanced growth path. The demographic parameters
b and d play precisely this role by dictating the cohort turnover rate. The knowledge
spillover parameter ϕ does so by disciplining the degree of autocorrelation in the stock
of ideas. In Table 3, I set d to values that correspond to an expected working life of 20
and 40 years and calculate the transition’s half-life and the welfare gain from eliminating
distortions.18 Interestingly, the demographic parameters have virtually no effect on
long-run income per capita. However, letting the expected working life vary by 10 years

18In particular, when varying d, I vary b by the same amount to keep the population growth rate constant,
and I re-calibrate β to keep expected years of schooling unchanged. This isolates the counterfactual
calculation from variations in the social discount rate and average human capital.
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shifts the transition’s half-life by roughly the same number of years. In present value
terms, this translates to counterfactual welfare gains of 2.9% or 2.5% instead of our
baseline figure of 2.7%.

Table 3: Income per Person, Half-Lives and Welfare: The Role of d and ϕ

Parameter Value Income Per Person Gain (%) Half-Life (years) Welfare Gain (%)

Baseline 8.63 97.9 2.67

d
1/20 8.63 87.1 2.91

1/40 8.63 107.1 2.49

ϕ
0.8 8.63 112.6 2.26

-6.2 8.63 96.9 2.70

Note: This table shows the long run percentage gain in income per person, its half-life and the percentage
welfare gain from removing all distortions in 2020 for different values of d and ϕ. When varying d and ϕ, I
respectively adjust b and σ as to keep population growth n, expected schooling and the degree of increasing
returns to scale γ constant. The values of 1/20 and 1/40 for d correspond to an expected working life of 20
and 40 years, respectively. The values of 0.8 and -6.2 for ϕ span the range of values considered in Bloom et al.
(2020).

For the knowledge spillover parameter ϕ, I select alternative values of 0.8 and -6.2,
which span the values considered in Bloom et al. (2020). Importantly, here, when varying
ϕ, I adjust σ to keep the degree of increasing returns to scale constant to γ = 1/3. That
is precisely why variations in ϕ lead to no changes in long-run living standards in Table
3. Although lower values for the knowledge spillover parameter seem to barely change
our results, a higher value of ϕ = 0.8 raises the transition’s half-life by about 15 years,
which shrinks welfare gains by 41 basis points.

5 Theoretical Extensions

In which directions could we extend our model, and how would these refinements
influence our counterfactual calculations? This section is an attempt to answer this
question with seemingly important ingredients that were left out of the model. The
derivations corresponding to these extensions are all presented in Appendix A.7.
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Role Models and Affirmative Action

Previously, we noted that the exposure distortion was intended to encapsulate barriers
such as the relative scarcity of relevant role models for young girls compared to young
boys. What if we were to delineate this more explicitly within the model? By doing so,
part of what is currently captured under the exposure distortion would be redefined as
a technological friction, emphasizing the importance of role models in molding career
aspirations. Such friction would have to be modeled as a technological constraint on
the environment. Hence, achieving a more efficient talent allocation could be a longer
journey, as women would only gradually join the ranks of inventors, in turn inspiring
the next generation to do so.

To incorporate the influence of role models in the model, an individual’s exposure
to innovation is still represented as a Bernoulli random variable. However, its mean
parameter now also depends on the proportion of individuals from each gender who
opted for research in prior generations:

ei ∼ Bernoulli((1 − τE
gκ)× Iϵg

gκ × Iϵ¬g
¬gκ).

From the point of view of a person i of gender g, Igκ denotes the fraction of inventors of
the same gender, whereas I¬gκ denotes that for the opposite gender. The parameters ϵg

and ϵ¬g capture the gender-specific relevance of role models while τE
gκ is the exposure

distortion net of the role model frictions. Note that this formulation introduces a subtle
yet significant externality within the model. Specifically, earlier generations of inventors
might not recognize how their occupational decisions resonate and influence the career
choices of subsequent cohorts. This market failure opens the door to affirmative action
on the grounds of efficiency considerations, an issue I will revisit shortly.

In this extension of the model, the average research labor supply in each occupation
is unchanged, but the proportion of individuals of gender g and cohort κ opting for
research is now given by:

P(zi ≥ zgκ ∩ ei = 1) =
(1 − τE

gκ)(1 − τL
gκ)

θ

(1 + τH
gκ)

θη
1+ν︸ ︷︷ ︸

Distortions

× Iϵg
gκ Iϵ¬g

¬gκ︸ ︷︷ ︸
Role models

×
(

ωR
κ

ωL
κ

)θ

︸ ︷︷ ︸
Wages

Hence, part of what was previously inferred as the exposure distortion is now captured
by technological frictions from role models. To infer the residual exposure distortion,
one must discipline the role model parameters ϵg and ϵ¬g. To do so, I borrow estimates
from Bell et al. (2018) who regress the fraction of children in a commuting zone who
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go on to patent in a specific technological field on the fraction of individuals of each
gender from that commuting zone who were granted a patent in that same technological
field.19 In this extended model, the exposure distortion is subtly tempered relative to the
baseline, and its interpretation becomes less straightforward. Nevertheless, conducting
the counterfactual analysis in the environment, I find a slightly more modest increase
in long-run income per person of 6.9% which translates to a consumption-equivalent
welfare gain of 2.3%.

It was previously mentioned that this extension of the model introduces a novel
externality: the current generation of individuals do not internalize that their occupation
choice will influence the fraction of individuals in future cohorts who will have the
opportunity to consider research as a career path. As such, the rationale behind subsidies
to inventor wages goes beyond merely harnessing knowledge spillovers–it also serves
as a corrective measure for this externality. This role model externality introduces
the potential for transitional gender-specific optimal policy. Indeed, given an initially
skewed gender composition, a welfare-maximizing planner might temporarily consider
implementing differential wage subsidies for female inventors to expedite the transition
towards a more efficient allocation of talent, trading off a slightly worse distribution of
female inventive talent today in order to access a larger pool of talent in a nearer future.

Figure 11 charts the ratio of female to male inventor wage subsidies along a transition
path. Initially, the planner optimally chooses to differentially subsidize the wages of
female inventors by about 45%. Yet, this difference almost entirely tapers off within
50 years, eventually reaching gender parity. Hence, a planner seeking to dynamically
maximize welfare would resort to affirmative action, at least temporarily, on the grounds
of efficiency rather than equity. However, if such a policy were to be politically untenable,
I find that the welfare cost of resorting to gender-neutral wage subsidies is negligible.

Technological Field Heterogeneity

Considering the nontrivial heterogeneity in the gender composition of technological
fields presented in Figure 3(b), could inventive talent be misallocated not only between
research and production but also across these different fields? To quantify this latter
source of misallocation, the model can be extended to accommodate talent heterogeneity
across technological fields.

In particular, the research sector could combine research labor R f t from different

19The results of this regression are presented in Table 5 for both girls and boys. Bell et al. (2018) estimate
statistically insignificant cross-gender coefficients but significant own-gender coefficients of 2.232 and
1.693 for girls and boys, respectively. To ensure coherence with the model, these estimates are first
translated in elasticity form and then averaged to obtain parameter values of ϵg = 0.24 and ϵ¬g = 0.
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Figure 11: Gender-Specific R&D Subsidy
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Note: This figure plots the ratio of optimal female to male inventor wage
subsidies along a transition path. The shaded area corresponds to lower
and upper bounds on the value of ϵg ∈ [0.14, 0.33] reflecting the 95%
confidence interval around the estimates of Bell et al. (2018).

fields indexed by f ∈ {1, . . . , F} according to a Cobb-Douglas technology:

Ȧt = Aϕ
t Rt where Rt =

F

∏
f=1

R
ζ f
f t and

F

∑
f=1

ζ f = 1

where the parameters ζ ∈ [0, 1]F would govern the relative importance of each field in
the production of new ideas. On the other side of this market would be individuals born
with a vector of inventive talent zi over those fields, drawn from a multivariate Pareto
distribution with cumulative distribution function G:20

G(z) = 1 −
(

F

∑
f=1

z f
−θ

1−ϱ

)1−ϱ

.

The shape parameter θ > 1 measures the degree of talent dispersion across individuals
whereas ϱ ∈ [0, 1) determines their correlation between technological fields within
individuals. In particular, talent draws are perfectly correlated across fields when ϱ → 1,

20The talent scale parameters are normalized to unity for all fields as they play the same role as the
parameters ζ. As described in Arkolakis, Rodrı́guez-Clare and Su (2017), this implies that the support of
the distribution is z f ≥ F1−ϱ for all f .
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or completely independent when ϱ = 0. With this field heterogeneity, exposure could be
modeled as a vector of independent Bernoulli random variables with mean parameters
{1 − τE

f gκ}F
f=1 ∈ [0, 1]F.

A person’s occupation choice would, therefore, be described in two successive steps.
First, if they receive exposure to a subset of fields F ⊆ {1, . . . , F}, they identify the field
f ∗ in that set that delivers the highest lifetime utility:

f ∗ = arg max
f∈F

{Ui f }.

Then, they would decide whether to pursue that field or work in production, depending
again on which of those two occupations promises the highest lifetime utility. Therefore,
a person whose optimally chosen field is f would choose it over a career in production
if and only if their talent in that field exceeds the field-specific threshold z f gκ:

z f gκ ≡
(1 + τH

f gκ)
η

1 − τL
f gκ

× ωL
κ

ωR
f κ

.

The following proposition characterizes the distribution of talent in optimally chosen
fields conditional on exposure to a nonempty subset F ⊆ {1, . . . , F}:

Proposition 1. Consider the people from cohort κ and gender g who received exposure to fields
F ⊆ {1, . . . , F}. Solving and aggregating individual field choices for this group reveals that
talent in chosen field f ∈ F follows a Pareto distribution:21

P(arg max
f ′∈F

{U f ′} = f ∩ z f ≥ z) =

(
ZF

f gκ

z

)θ

where ZF
f gκ ≡

 z
θ

1−ϱ

f gκ

∑ f ′∈F z
θ

1−ϱ

f ′gκ


ϱ/θ

.

With this proposition, one can show that the total fraction Igκ of inventors in cohort
κ and gender g is given by:

Igκ ≡
F

∑
f=1

∑
F∈Γ( f )

EF
gκ

(
ZF

f gκ

z f gκ

)θ

where EF
gκ ≡ ∏

f ′/∈F
τE

f ′gκ × ∏
f ′∈F

(1 − τE
f ′gκ).

Here, Γ( f ) denotes the set of all nonempty subsets of {1, . . . , F} containing element f
and the EF

gκ describes the probability that a person from cohort κ and gender g receives

21Proofs are in Appendix A.
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exposure to the subset of fields F :22 One can similarly show that the average supply of
research labor in technological field f , cohort κ, and gender g is proportional to:

E[zi f × hi|zi f ≥ z f gκ] ∝
ωL

κ

(1 − τL
f gκ)ω

R
f κ

.

Calibrating the parameters ζ to match the distribution of inventors across fields and the
parameter ϱ to target the cross-field inventive output correlation of multi-field inventors,
I find that the long-run increase in income per person is almost unchanged from the
baseline figure of 8.6%.23 In fact, equalizing distortions across fields while leaving the
aggregate share of women inventors unchanged barely moves income per person in the
long run, suggesting that the bulk of talent misallocation is between the research and
production sectors rather than across fields.

“On-The-Job” Human Capital

Women could be facing higher barriers to not only acquire, but also maintain/update
human capital over their careers. For instance, it may prove more difficult for women to
keep up with the technological frontier if the burden of childcare and housework falls
disproportionately on them (Kim and Moser, 2021; Kaltenberg, Jaffe and Lachman, 2021).
To reflect this possibility, I extend the theory to allow for gender-specific human capital
depreciation: a reduced-form embodiment of gendered obstacles to skill maintenance.
Under perfect foresight, it is straightforward to show that the differential depreciation
rates are factored into consumption and saving decisions such that this distortion still
operates through selection. That is, if gendered barriers to human capital maintenance
constituted a prominent explanation for the scarcity of women in innovation, our theory
implies that the latter would be more productive than their male colleagues at the onset
of their careers, which is at odds with the evidence presented earlier.

22The set Γ( f ) has cardinality 2F−1 and summarizes every possible way in which a person can be
exposed to field f .

23Specifically, I identify the set of multi-field inventors whose two main fields in terms of patents
granted represent over a third of their lifetime inventive output. This set contains 118,061 inventors.
From this bivariate distribution, I derive the empirical copula to nonparametrically estimate an upper
tail dependence coefficient (UTDC) of 0.32 following the methodology of Frahm, Junker and Schmidt
(2005). To relate this estimate to our model, we know from Arkolakis et al. (2017) that the UTDC of the
multivariate Pareto distribution is equal to 2 − 21−ϱ, which implies a value of ϱ = 0.25.
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Occupational Preferences

Could gender differences in intrinsic preferences for innovation be a plausible candidate
explanation for the underrepresentation of women among inventors? Broadening the
model in this direction makes clear that this force yet again operates through selection.
Indeed, if women disliked careers in innovation, only the most talented would pursue
them despite their perceived disamenities. An alternative possibility is that individuals
self-select into occupations based on those preferences rather than their inherent abilities
or talents. If this is the case, our inference of the labor market distortion might not be
accurate. As opposed to selection on talent, selection on preferences need not imply that
female inventors would be more productive on average than their male counterparts.

Inventive Talent Uncertainty

How would our counterfactual calculations change if we were to relax the stylized
assumption that individuals can perfectly observe their talent when choosing a career?
If aspiring inventors face uncertainty about their own innovation potential, could gender
differences in risk tolerance deter women from pursuing this occupation? To answer
this question, I follow Bell et al. (2019) and assume that inventive talent xi is the product
of an observable signal zi and an unobserved shock ziu which is only realized after the
occupation choice:

xi = zi × ziu.

The signal is still drawn from the distribution in equation (6), but the talent shock
is instead drawn from a different Pareto distribution with a cumulative distribution
function denoted by Gu:

Gu(zu) = 1 −
(

ϑu

zu

)θu

where ϑu ≡ θu − 1
θu

.

Here, the shape parameter θu can be interpreted as the degree of talent uncertainty.
With this formulation, the distribution’s scale parameter ϑu directly depends on its
shape parameter to preserve a unit average. In that sense, ziu can be thought of as a
mean-preserving spread to the distribution of the talent signal. This extension delivers a
“fuzzy” selection into inventorship, as individuals with talent signals above the selection
threshold may ultimately receive deceptively low talent shocks.

However, allowing for unobserved talent heterogeneity in our theory does not
substantively affect the inference of distortions presented earlier. Indeed, if women
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were less tolerant of the uncertainty that inventive careers entail, only the most talented
would earn enough to find it worthwhile to pursue this path. Since women and men
inventors appear to be similarly productive, it seems unlikely that such gendered risk
aversion could play a meaningful role. The “fuzzy” selection into inventorship that
results from this uncertainty is also inconsequential for our counterfactual calculations.
Letting θu take values of 1.1, 2, or infinity changes the long-run gain in income per
person from eliminating distortions by less than a basis point.

6 Conclusion

Why are women so vastly and heterogeneously underrepresented among inventors?
And what are the macroeconomic consequences of missing out on half of our brightest
minds? To answer these questions, I develop a model of semi-endogenous growth in
which individuals with heterogeneous inventive talent can choose between a career
in innovation or production. However, three gendered barriers can deter or prevent
women from pursuing their comparative advantage. They may face different forms of
discrimination in the labor market, be confronted with higher obstacles to human capital
formation, or lack the opportunities and role models to become innovators. Underlying
this theory are two premises: (1) there are no intrinsic differences in inventive potential
between women and men, and (2) exposure to inventive careers bears no relation to an
individual’s innate talent.

Interpreting micro-level data on U.S. inventors through the lens of this framework,
I find that the underrepresentation of women is virtually all due to a lack of exposure
to innovation. Women and men inventors are just too similarly productive, and the
educational attainment gender gap among R&D workers is too narrow for distortions
and frictions operating through selection or human capital to play a prominent role.
From a policy perspective, this suggests that we ought to focus our attention and
resources on bottlenecks that manifest earlier along the innovation pipeline.

I then take advantage of the general equilibrium structure of this theory to quantify
the aggregate implications of lifting all barriers to female innovation. This calculation
reveals that U.S. income per person would increase by 8.6% in the long run. Taking
transition dynamics into account, eliminating all distortions would be equivalent to
permanently raising everyone’s consumption by 2.7%. Those economy-wide gains
are mostly achieved by bringing better rather than more people into the process of
innovation. Indeed, as barriers fall, new generations of ingenious women join the ranks
of inventors, thus driving out marginally talented men.
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This paper leaves the door open to many exciting avenues for future research. Which
specific policies would be most effective in expanding access to inventive opportunities
for young girls? Can data on inventor earnings, educational attainment, or childhood
test scores provide more direct empirical evidence on various gendered distortions? Are
people from low-income families and minority backgrounds facing the same obstacles
to innovation as women? How much more prosperous would we be if we opened the
doors of innovation to other underrepresented groups? Those are all outstanding but
potentially fruitful questions that await future study.
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A Theoretical Appendix

A.1 The Final Sector’s Problem

Taking prices and the measure of varieties as given, the final sector’s problem is to choose
how much of each variety to produce with as to maximize profits. This is equivalent to
the following cost minimization problem:

min
yjt

∫ At

0
pjtyjt s.t.

(∫ At

0
y

σ−1
σ

jt dj
) σ

σ−1

≥ Yt.

The first-order conditions deliver the following demand functions:

yjt = (λt/pjt)
σYt

where λt > 0 is the Lagrange multiplier on the production constraint. This multiplier
corresponds to the price of the final good Pt and can therefore be normalized to unity.

A.2 The Intermediate Sector’s Problem

Taking the demand function for its variety, the rental rate of physical capital, and the
wage paid to workers as given, the intermediate firm’s problem is to choose its variety’s
price as well as physical capital and labor to maximize profits:

πjt = max
pjt,ℓjt,kjt

{pjtyjt − (rt + δ)k jt − wL
t ℓjt}.

In particular, the choice of physical capital and labor is the solution to the following cost
minimization problem:

min
kjt,ℓjt

{(rt + δ)k jt + wL
t ℓjt} s.t. kα

jtℓ
1−α
jt ≥ yjt.

The first-order conditions deliver the following demand functions:

k jt =
λtαyjt

rt + δ
and ℓjt =

λt(1 − α)yjt

wL
t
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where λt > 0 is the Lagrange multiplier on the production constraint. Substituting these
demand functions in the firm’s production function, one can solve for λt:

λt =

(
rt + δ

α

)α ( wL
t

1 − α

)1−α

which is also equal to the firm’s marginal cost of production. Substituting all the above
demand functions in the firm’s profit maximization problem, we obtain:

πjt = max
pjt

(pjt − λt)Yt/pσ
jt.

The first-order condition delivers the following pricing function:

pjt = µ

(
rt + δ

α

)α ( wL
t

1 − α

)1−α

where µ ≡ σ

σ − 1
.

Notice that all firms make the same price, physical capital, and labor choices, which
implies that profits are symmetric within the intermediate sector. Substituting the pricing
function in the profit function and integrating across firms delivers:

∫ At

0
πjtdj =

∫ At

0
pjtyjtdj/σ = Yt/σ.

Since profits are symmetric across firms, we have that:

πjt =
Yt

σAt
∀j ∈ [0, At].

Symmetry in physical capital and labor choices also implies that firms produce:

yjt =
Kα

t L1−α
t

At
.

Substituting this in the production function of the final good delivers:

Yt = A
1

σ−1
t Kα

t L1−α
t .

Similarly, by substituting the pricing function in the firm-level demand functions for
physical capital and labor and integrating, we obtain the aggregate demand functions:

Kt =
αYt

µ(rt + δ)
and Lt =

(1 − α)Yt

µwL
t
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A.3 The Research Sector’s Problem

Taking wages and the measure of varieties as given, the research sector’s problem is to
choose a patent price and research labor to maximize profits:

max
qt,Rt

{qt Aϕ
t Rt − wR

t Rt}.

Hence, the first-order condition for research labor is:

qt Aϕ
t = wR

t .

Since there is free-entry in the intermediate sector, the final sector sets the price of a
patent to extract all rents from the commercialization of an idea:

qt =
∫ ∞

t
e−
∫ t′

t rτdτπt′dt′.

Differentiating with respect to time and using the expression for a firm’s profits, we
obtain the law of motion for the price of a patent:

q̇t = rtqt −
Yt

σAt
.

Technological Field Heterogeneity

With heterogeneity across technological fields, taking wages and the measure of varieties
as given, the research sector’s problem is to choose a patent price and research labor of
each type to maximize profits:

max
qt,R f t

{qt Aϕ
t

F

∏
f=1

R
ζ f
f t −

F

∑
f=1

wR
t R f t}.

In particular, the choice of research labor in each field is the solution to the following
cost-minimization problem:

min
R f t

F

∑
f=1

wR
f tR f t s.t.

F

∏
f=1

R
ζ f
f t ≥ Rt.

The first-order conditions deliver the following demand functions:

R f t = Wtζ f Rt/wR
f t

50



where Wt > 0 is the Lagrange multiplier on the aggregate research labor constraint.
Substituting these demand functions in the expression for aggregate research labor, one
can solve for Wt:

Wt =
F

∏
f=1

(
wR

f t

ζ f

)ζ f

which is also equal to the research sector’s marginal cost of production. Substituting
the above demand functions in the research sector’s profit maximization problem, we
obtain:

max
qt,Rt

{qt Aϕ
t Rt − WtRt}.

The first-order condition for aggregate research labor is:

qt Aϕ
t = Wt

which, together with the demand functions for research labor of each type, delivers the
corresponding market-clearing conditions:

wR
f t = qt Aϕ

t ζ f Rt/R f t.

Finally, since there is free-entry in the intermediate sector, the final sector sets the price
of a patent to extract all rents from the commercialization of an idea:

qt =
∫ ∞

t
e−
∫ t′

t rτdτπt′dt′.

Differentiating with respect to time and using the expression for a firm’s profits, we
obtain the law of motion for the price of a patent:

q̇t = rtqt −
Yt

σAt
.

A.4 The Individual’s Problem

Taking prices as given, the problem of an individual i is to select a career in which they
will choose consumption and schooling to maximize lifetime utility:

Ui = max
cit,si

∫ ∞

κ
e−(ρ+d)(t−κ) ln(cit)dt − (1 + 1{i∈R}τH

gκ)βsi
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subject to the flow budget constraint:

ȧit =

rtait + (1 − τL
gt)w

R
t zihi − cit if i ∈ R,

rtait + wL
t hi − cit if i ∈ L,

and the initial condition aiκ = 0. The corresponding current-value Hamiltonian is:

Ht =

ln(cit) + λt[rtait + (1 − τL
gt)w

R
t zihi − cit] if i ∈ R,

ln(cit) + λt(rtait + wL
t hi − cit) if i ∈ L

where λt denotes the costate variable and limt→∞ e−(ρ+d)(t−κ)λtait = 0. The optimality
conditions are:

∂Ht

∂cit
= c−1

it − λt = 0 and
∂Ht

∂ait
= λtrt = (ρ + d)λt − λ̇t.

Combining those equations, we obtain the Euler equation and the No-Ponzi condition:

ċit

cit
= rt − ρ − d and lim

t→∞
e−
∫ t

κ rt′dt′ait = 0.

Integrating the flow budget constraint using both equations delivers:

cit =

(ρ + d)[ait + (1 − τL
gt)ω

R
t zihi] if i ∈ R,

(ρ + d)(ait + ωL
t hi) if i ∈ L

where ωo
t ≡

∫ ∞

t
e−
∫ t′

t rτdτwo
t′dt′

for o ∈ {R, L}. Using the individual’s Euler equation and the flow budget constraint’s
initial condition, we can express consumption in period t from the point of view of
period κ as:

cit =

(ρ + d)(1 − τL
gκ)ω

R
κ zihie

∫ t
κ (rτ−ρ−d)dτ if i ∈ R,

(ρ + d)ωL
κ hie

∫ t
κ (rτ−ρ−d)dτ if i ∈ L.

Substituting this equation in the definition of lifetime utility:

Ui =


ln[(ρ+d)(1−τL

gκ)ω
R
κ zis

η
i ]−1

ρ+d − (1 + τH
gκ)βsi + ∆κ if i ∈ R,

ln[(ρ+d)ωL
κ sη

i ]−1
ρ+d − βsi + ∆κ if i ∈ L,
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where ∆κ is defined for convenience as:

∆κ ≡
∫ ∞

κ
e−(ρ+d)(t−κ)

∫ t

κ
rt′dt′dt.

Choosing schooling time to maximize lifetime utility:

si =
η

β(ρ + d)(1 + 1{i∈R}τH
gκ)

.

Substituting this choice back into the definition of lifetime utility:

Ui =


ln[ηη(ρ+d)1−ηω̂R

gκzi]−η[ln(β)+1]−1
ρ+d + ∆κ if i ∈ R,

ln[ηη(ρ+d)1−ηωL
κ ]−η[ln(β)+1]−1

ρ+d + ∆κ if i ∈ L,

where ω̂R
gκ is defined for convenience as:

ω̂R
gκ ≡

1 − τL
gκ

(1 + τH
gκ)

η
× ωR

κ .

Individual i will decide to pursue research if and only if their lifetime utility in that
career exceeds that in production, which delivers a selection threshold on talent:

zgκ ≡ ωL
κ

ω̂R
gκ

.

Technological Field Heterogeneity

With heterogeneity across technological fields, taking prices as given, the problem of an
individual i is to select a career in which they will choose consumption and schooling to
maximize lifetime utility:

Ui = max
cit,si

∫ ∞

κ
e−(ρ+d)(t−κ) ln(cit)dt − (1 + 1{i∈ f }τH

f gκ)βsi

subject to the flow budget constraint:

ȧit =

rtait + (1 − τL
f gt)w

R
f tzi f hi − cit if i ∈ f ,

rtait + wL
t hi − cit if i ∈ L,
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and the initial condition aiκ = 0. The corresponding current-value Hamiltonian is:

Ht =

ln(cit) + λt[rtait + (1 − τL
f gt)w

R
f tzi f hi − cit] if i ∈ f ,

ln(cit) + λt(rtait + wL
t hi − cit) if i ∈ L

where λt denotes the costate variable and limt→∞ e−(ρ+d)(t−κ)λtait = 0. The optimality
conditions are:

∂Ht

∂cit
= c−1

it − λt = 0 and
∂Ht

∂ait
= λtrt = (ρ + d)λt − λ̇t.

Combining those equations, we obtain the Euler equation and the No-Ponzi condition:

ċit

cit
= rt − ρ − d and lim

t→∞
e−
∫ t

κ rt′dt′ait = 0.

Integrating the flow budget constraint using both equations delivers:

cit =

(ρ + d)[ait + (1 − τL
f gt)ω

R
f tzi f hi] if i ∈ f ,

(ρ + d)(ait + ωL
t hi) if i ∈ L

where ωL
t and ωR

f t are defined as before. Using the individual’s Euler equation and the
flow budget constraint’s initial condition, we can express consumption in period t from
the point of view of period κ as:

cit =

(ρ + d)(1 − τL
f gκ)ω

R
f κzi f hie

∫ t
κ (rτ−ρ−d)dτ if i ∈ f ,

(ρ + d)ωL
κ hie

∫ t
κ (rτ−ρ−d)dτ if i ∈ L.

Substituting this equation in the definition of lifetime utility:

Ui =


ln[(ρ+d)(1−τL

f gκ)ω
R
f κzi f sη

i ]−1
ρ+d − (1 + τH

f gκ)βsi + ∆κ if i ∈ f ,
ln[(ρ+d)ωL

κ sη
i ]−1

ρ+d − βsi + ∆κ if i ∈ L.

Choosing schooling time to maximize lifetime utility:

si =
η

β(ρ + d)(1 + 1{i∈ f }τH
f gκ)

.
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Substituting this choice back into the definition of lifetime utility:

Ui =


ln[ηη(ρ+d)1−ηω̂R

f gκzi f ]−η[ln(β)+1]−1
ρ+d + ∆κ if i ∈ f ,

ln[ηη(ρ+d)1−ηωL
κ ]−η[ln(β)+1]−1

ρ+d + ∆κ if i ∈ L,

where ω̂R
f gκ is defined for convenience as:

ω̂R
f gκ ≡

1 − τL
f gκ

(1 + τH
f gκ)

η
× ωR

f κ.

Individual i will decide to pursue research in their optimally chosen field f if and only if
their lifetime utility in that career exceeds that in production, which delivers a selection
threshold on talent:

z f gκ ≡ ωL
κ

ω̂R
f gκ

.

A.5 Aggregation

The fraction of individuals from cohort κ in period t is equal to be−b(t−κ). Denoting
average consumption within cohort κ as ct(κ) delivers the following expression for
average consumption in the economy:

ct =
∫ t

−∞
be−b(t−κ)ct(κ)dκ.

Differentiating with respect to time and using the Euler equation:

ċt = (rt − ρ − d)ct − b[ct − ct(t)].

Substituting in the consumption function and the asset market clearing condition:

ċt = (rt − ρ − d)ct − b(ρ + d)[kt + qt At/Nt + Ht − Ht(t)]
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where kt ≡ Kt/Nt is physical capital per person, and Ht and Ht(t) denote average
human wealth across all cohorts and in the most recent one, respectively:24

Ht ≡
ωL

t Lt

Nt
+

∑g(1 − τL
gt)ω

R
t Rgt

2Nt
and Ht(t) ≡ η̂[1 + (ϑ − 1)It]ω

L
t .

Here, the fraction It of inventors among the most recent cohort is defined as:

It ≡
1
2
× ∑

g
(1 − τE

gt)z
−θ
gt .

The laws of motion for Lt and Rgt are:

L̇t = bη̂(1 − It)Nt − dLt and Ṙgt =
bη̂ϑωL

t IgtNt

(1 − τL
gt)ω

R
t
− dRgt

and the laws of motion for ∆t and ωR
t are:

∆̇t = (ρ + d)∆t −
rt

ρ + d
and ω̇R

t = rtω
R
t − wR

t .

Define the normalized variable x∗t ≡ xte−gxt such that gx is the balanced growth rate
of variable xt and let N∗

t = 1 for all t. Then, collecting the above and performing some
simple substitutions, we obtain the system of ordinary differential equations describing
the dynamics of the equilibrium allocation:

ċ∗t = (rt − ρ − d − gc)c∗t − b(ρ + d)[k∗t + q∗t A∗
t + H∗

t − H∗
t (t)],

L̇∗
t = b[η̂(1 − It)− L∗

t ],

Ṙ∗
gt = b{(η̂ϑωL

t
∗

Igt)/[(1 − τL
gt)ω

R
t
∗
]− R∗

gt},

ω̇∗
t = (rt − gc)ω

R
t
∗ − wR

t
∗
,

Ȧ∗
t = A∗

t
ϕ(∑g R∗

gt/2)− gA A∗
t ,

q̇∗t = (rt − gq)q∗t − y∗t /(σA∗
t ),

k̇∗t = y∗t − (δ + n + gc)k∗t − c∗t ,

∆̇t = (ρ + d)∆t − rt/(ρ + d)

24The two constants ϑ and η̂ are defined as ϑ ≡ θ/(θ − 1) and η̂ ≡ {η/[β(ρ + d)]}η .
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where we have the additional definitions:

gc ≡ n/[(1 − α)(σ − 1)(1 − ϕ)],

gA ≡ n/(1 − ϕ),

gq ≡ n + gc − gA.

The steady state of the model is found by setting all time derivatives to zero and solving
the resulting nonlinear system of equations.

Technological Field Heterogeneity

Proof of Proposition 1. Consider the group of people from cohort κ and gender g who
received exposure to fields F ⊆ {1, . . . , F} and choose field f :

U f ′ ≤ U f ⇔ z f ′ ≤
ω̂ f gκ

ω̂ f ′gκ
× z f ∀ f ′ ∈ F\ f .

Using property (ii) of the multivariate Pareto distribution in Arkolakis et al. (2017), we
have that the lower-dimensional marginal of G for the nonempty subset F is:

GF (z) = 1 −
(

∑
f ′∈F

z f ′
−θ

1−ϱ

)1−ϱ

.

Without loss of generality, suppose that F has cardinality n ∈ {1, . . . , F} such that we
can order its elements from F1 to Fn. Then, we know that:

P(arg max
f ′∈F

{U f ′} = f ∩ z f = z) =
∂GF

(
zF1 ≤ ω̂ f gκ

ω̂F1gκ
× z, . . . , z f ≤ z, . . . , zFn ≤ ω̂ f gκ

ω̂Fn gκ
× z
)

∂z f
.

Using the definition of GF , we can rewrite the above equation as:

P(arg max
f ′∈F

{U f ′} = f ∩ z f = z) = θZF
f gκ

θ
z−θ−1

where the term ZF
f gκ is defined as:

ZF
f gκ ≡

 z
θ

1−ϱ

f gκ

∑ f ′∈F z
θ

1−ϱ

f ′gκ


ϱ/θ

.
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With heterogeneity across technological fields, we have:25

Ht ≡
ωL

t Lt

Nt
+

∑F
f=1 ∑g(1 − τL

f gt)ω
R
f tR f gt

2Nt
and Ht(t) ≡ η̂[1 + (ϑ − 1)It]ω

L
t .

Here, the fraction It of inventors among the most recent cohort is defined as:

It ≡
1
2
× ∑

g

F

∑
f=1

∑
F∈Γ( f )

EF
gt

(
ZF

f gt

z f gt

)θ

.

The laws of motion for Lt and R f gt are:

L̇t = bη̂(1 − It)Nt − dLt and Ṙ f gt =
bη̂ϑωL

t I f gtNt

(1 − τL
f gt)ω

R
f t
− dR f gt ∀ f ∈ {1, . . . , F}

and the laws of motion for ∆t and ωR
f t are:

∆̇t = (ρ + d)∆t −
rt

ρ + d
and ω̇R

f t = rtω
R
f t − wR

f t ∀ f ∈ {0, . . . , F}.

Collecting the above and performing some simple substitutions, we obtain the system
of ordinary differential equations describing the dynamics of the equilibrium allocation:

ċ∗t = (rt − ρ − d − gc)c∗t − b(ρ + d)[k∗t + q∗t A∗
t + H∗

t − H∗
t (t)],

L̇∗
t = b[η̂(1 − It)− L∗

t ],

Ṙ∗
f gt = b{(η̂ϑωL

t
∗

I f gt)/[(1 − τL
f gt)ω

R
f t
∗
]− R∗

f gt},

ω̇∗
f t = (rt − gc)ω

R
f t
∗ − wR

t
∗
,

Ȧ∗
t = A∗

t
ϕ ∏F

f=1(∑g R∗
f gt/2)ζ f − gA A∗

t ,

q̇∗t = (rt − gq)q∗t − y∗t /(σA∗
t ),

k̇∗t = y∗t − (δ + n + gc)k∗t − c∗t ,

∆̇t = (ρ + d)∆t − rt/(ρ + d).
25The two constants ϑ and η̂ are defined as ϑ ≡ θ/(θ − 1) and η̂ ≡ {η/[β(ρ + d)]}η .
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A.6 Social Welfare

Define the utilitarian social welfare function as:

Wt =
∫ t

−∞
be−b(t−κ)

∫ ∞

t
e−(ρ+d)(τ−t)E[ln(ciτ)]dτdκ

+
∫ ∞

t
be−(ρ−n)(κ−t)

∫ ∞

κ
e−(ρ+d)(τ−κ)E[ln(ciτ)]dτdκ

where the first and second terms, respectively correspond to the remaining lifetime
utility of surviving and future cohorts. For simplicity, the term involving preferences
over pre-career leisure is ignored as all individuals receive the same disutility from
schooling, regardless of distortions. Changing the order of integration:

Wt =
∫ ∞

t
e−(ρ−n)(τ−t)

∫ τ

−∞
be−b(τ−κ)E[ln(ciτ)]dκdτ.

Balanced growth path.—Suppose the economy was and remains on its balanced growth
path. Then, average flow utility for cohort κ at time τ is:

E[ln(ciτ)] = ln[η̂(ρ + d)ωL
τ ] + (r − ρ − d − gc)(τ − κ) + I/θ.

Integrating across cohorts, we have:∫ τ

−∞
be−b(τ−κ)E[ln(ciτ)]dκ = ln[η̂(ρ + d)ωL

τ ] + (r − ρ − d − gc)/b + I/θ.

Further integrating over time, we obtain:

WBGP
t = {ln[η̂(ρ + d)ωL

t
∗
] + (r − ρ − d − gc)/b + I/θ + gc/(ρ − n)}/(ρ − n).

Transition path.—Suppose instead that the economy was on its balanced growth path
before time t and is launched on a transition path thereafter. Then, average flow utility
for future cohort κ at time τ is:

E[ln(ciτ)|κ ≥ t] = ln[η̂(ρ + d)ωL
κ ] +

∫ τ

κ
(r′t − ρ − d)dt′ + Iκ/θ.

Integrating over time, we have:∫ ∞

κ
e−(ρ+d)(τ−κ)E[ln(ciτ)|κ ≥ t]dτ = {ln[η̂(ρ + d)ωL

κ ] + Iκ/θ − 1}/(ρ + d) + ∆κ.
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Further integrating over future cohorts, we obtain:

WF
t =

b
∫ ∞

t e−(ρ−n)(κ−t){ln[η̂(ρ + d)ωL
κ
∗
] + Iκ/θ + (ρ + d)∆κ}dκ

ρ + d
+

b(gc + n − ρ)

(ρ + d)(ρ − n)2 .

In contrast, average flow utility for surviving cohort κ at time τ is:

E[ln(ciτ)|κ < t] = ln[η̂(ρ + d)ωL
t

old
] +

∫ τ

t
(r′t − ρ − d)dt′

+ (1 − I) ln

[
e(r−ρ−d−gc)(t−κ) +

ωL
t

new

ωL
t

old − 1

]

+ ∑
g

Ig

{
ln

[
e(r−ρ−d−gc)(t−κ) +

(1 − τL,new
gt )ωR

t
new

(1 − τL,old
g )ωR

t
old − 1

]
+

1
θ

}

where the superscript “new” indexes a variable on the new transition path and the
superscript “old” indexes a variable on the previous balanced growth path. Integrating
over time, we have:∫ ∞

t
e−(ρ+d)(τ−t)E[ln(ciτ)|κ < t]dτ = {ln[η̂(ρ + d)ωL

t
old

]− 1}/(ρ + d) + ∆t

+ (1 − I) ln

[
e(r−ρ−d−gc)(t−κ) +

ωL
t

new

ωL
t

old − 1

]
/(ρ + d)

+ ∑
g

Ig

{
ln

[
e(r−ρ−d−gc)(t−κ) +

(1 − τL,new
gt )ωR

t
new

(1 − τL,old
g )ωR

t
old − 1

]
+

1
θ

}
/(ρ + d).

Further integrating over surviving cohorts, we obtain:

WS
t = {ln[η̂(ρ + d)ωL

t
old*

]− 1}/(ρ + d) + ∆t

+ (1 − I)
∫ t

−∞
be−b(t−κ) ln

[
e(r−ρ−d−gc)(t−κ) +

ωL
t

new*

ωL
t

old* − 1

]
dκ/(ρ + d)

+ ∑
g

Ig


∫ t

−∞
be−b(t−κ) ln

e(r−ρ−d−gc)(t−κ) +
(1 − τL,new

gt )ωR
t

new*

(1 − τL,old
g )ωR

t
old* − 1

dκ +
1
θ

 /(ρ + d).

Consumption-equivalent welfare.—By how much should we permanently increase
the consumption of all individuals from the balanced growth path economy to leave
them as well off as the individuals from the transition path economy? Letting the
proportional permanent increase in consumption be denoted by λ, the answer to that
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question satisfies:

λ = exp[(ρ − n)(WS
t + WF

t − WBGP
t )].

A.7 Theoretical Extensions

In this section of the Appendix, I consider several extensions to the theoretical framework
presented in the main text.

Role Models and Affirmative Action

Introducing role models in this framework is straightforward. The only difference
relative to the aggregation results above is that the fraction Igt(t) of inventors among
the most recent cohort is defined as:

Igt(t) ≡ (1 − τE
gt)z

−θ
gt Iϵg

gt Iϵ¬g
¬gt

where Igt and It are now defined as:

Igt ≡
∫ t

−∞
be−b(t−κ) It(κ)dκ and It ≡

1
2
× ∑

g
Igt.

Differentiating this equation with respect to time delivers:

İgt = b[Igt(t)− Igt]

which consists of two additional ordinary differential equations to include in the system.

Let us now derive a constrained optimal allocation of resources under this theoretical
extension. In particular, assume that a benevolent social planner seeks to maximize
the present discounted value of consumption per capita while respecting privately
optimal individual schooling decisions. Then, the planner’s stationary current-value
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Hamiltonian is given by:

Ht = ln(c∗t ) + λk
t [A

∗
t

1
σ−1 k∗t

αL∗
t

1−α − (δ + n + gc)k∗t − c∗t ]

+ λL
t b[η̂(1 − ∑g z−θ

gt Iϵg
gt Iϵ¬g

¬gt/2)− L∗
t ]

+ λA
t (A∗

t
ϕ ∑g R∗

gt/2 − gA A∗
t )

+ b ∑g λR
gt(η̂ϑz1−θ

gt Iϵg
gt Iϵ¬g

¬gt − R∗
gt)

+ b ∑g λI
gt(z

−θ
gt Iϵg

gt Iϵ¬g
¬gt − Igt).

Assuming as in our parameterization that ϵg = ϵ and ϵ¬g = 0, the optimality conditions
are given by:

∂Ht

∂c∗t
= 1/c∗t − λk

t = 0

∂Ht

∂zgt
= λL

t bη̂θz−θ−1
gt Iϵ

gt/2 − λR
gtθbη̂z−θ

gt Iϵ
gt − λI

gtθbz−θ−1
gt Iϵ

gt = 0,

∂Ht

∂k∗t
= λk

t [αA∗
t

1
σ−1 (L∗

t /k∗t )
1−α − δ − n − gc] = (ρ − n)λk

t − λ̇k
t ,

∂Ht

∂L∗
t
= λk

t (1 − α)A∗
t

1
σ−1 (k∗t /L∗

t )
α − λL

t b = (ρ − n)λL
t − λ̇L

t ,

∂Ht

∂A∗
t
= λk

t A∗
t

2−σ
σ−1 k∗t

αL∗
t

1−α/(σ − 1) + λA
t (ϕA∗

t
ϕ−1 ∑g Rgt/2 − gA) = (ρ − n)λA

t − λ̇A
t ,

∂Ht

∂R∗
gt

= λA
t Aϕ

t /2 − λR
gtb = (ρ − n)λR

gt − λ̇R
gt,

∂Ht

∂Igt
= −λL

t bη̂ϵz−θ
gt Iϵ−1

gt /2 + λR
gtbη̂ϑϵz1−θ

gt Iϵ−1
gt + λI

gtb(ϵz−θ
gt Iϵ−1

gt − 1) = (ρ − n)λI
gt − λ̇I

gt.

Rearranging these equations, we obtain:

c∗t = 1/λk
t

zgt = (λL
t /2 − λI

gt/η̂)/λR
gt,

λ̇k
t = [ρ + δ + gc − αA∗

t
1

σ−1 (L∗
t /k∗t )

1−α]λk
t ,

λ̇L
t = (ρ + d)λL

t − (1 − α)A∗
t

1
σ−1 (k∗t /L∗

t )
αλk

t ,

λ̇A
t = (ρ − n + gA − ϕA∗

t
ϕ−1 ∑g R∗

gt/2)λA
t − A∗

t
2−σ
σ−1 k∗t

αL∗
t

1−αλk
t /(σ − 1),

λ̇R
gt = (ρ + d)λR

gt − λA
t A∗

t
ϕ/2,

λ̇I
gt = (ρ + d − bϵz−θ

gt Iϵ−1
gt )λI

gt + bη̂ϵz−θ
gt Iϵ−1

gt λL
t /2 − bη̂ϑϵz1−θ

gt Iϵ−1
gt λR

gt.
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If the planner was instead constrained to choose a single talent threshold zt for all g, we
would obtain:

c∗t = 1/λk
t

zt = (λL
t ∑g Iϵ

gt/2 − ∑g λI
gt Iϵ

gt/η̂)/ ∑g λR
gt Iϵ

gt,

λ̇k
t = [ρ + δ + gc − αA∗

t
1

σ−1 (L∗
t /k∗t )

1−α]λk
t ,

λ̇L
t = (ρ + d)λL

t − (1 − α)A∗
t

1
σ−1 (k∗t /L∗

t )
αλk

t ,

λ̇A
t = (ρ − n + gA − ϕA∗

t
ϕ−1 ∑g R∗

gt/2)λA
t − A∗

t
2−σ
σ−1 k∗t

αL∗
t

1−αλk
t /(σ − 1),

λ̇R
gt = (ρ + d)λR

gt − λA
t A∗

t
ϕ/2,

λ̇I
gt = (ρ + d − bϵz−θ

t Iϵ−1
gt )λI

gt + bη̂ϵz−θ
t Iϵ−1

gt λL
t /2 − bη̂ϑϵz1−θ

t Iϵ−1
gt λR

gt.

Gendered Preferences

Suppose that lifetime utility took the form:

Ui =
∫ ∞

κ
e−(ρ+d)(t−κ) ln(cit)dt + 1{i∈ f } ln(ν f g)− βsi

where ν f g > 0 measures gendered preferences for particular technological fields. Since
this extension does not affect the choices of consumption or schooling, the selection
threshold on talent becomes:

z f gκ ≡
(1 + τH

gκ)
η

1 − τL
gκ

× ωL
κ

ωR
f κ

× 1
ν f g

.

Therefore, lower preferences for specific fields raise the talent threshold above which
it becomes worthwhile to pursue those fields. In other words, if women disliked
being inventors, only the most talented would earn enough to compensate for a field’s
disamenity. In particular, this threshold implies that average research productivity in
field f , gender g, and cohort κ is proportional to:

E[zi f × hi|zi f ≥ z f gκ] ∝
1

1 − τL
gκ

× 1
ν f g

.

Therefore, if inherited gendered preferences constituted a plausible explanation for the
scarcity of women in innovation, the latter would have to be more productive than
their male colleagues, above and beyond what would be implied by the labor market
distortion alone.
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“On-The-Job” Human Capital

Suppose that over the course of their research career, the human capital of a person of
gender g evolves as follows:

ḣit = −1{i∈R}δg × hit where hiκ = sη
i .

Solving the linear differential equation delivers:

hit = sη
i e−δg(t−κ).

Then, the individual consumption function becomes:

cit =

(ρ + d)(1 − τL
gκ)ω

R
gκzis

η
i e
∫ t

κ (rτ−ρ−d)dτ if i ∈ R,

(ρ + d)ωL
κ sη

i e
∫ t

κ (rτ−ρ−d)dτ if i ∈ L,

where the stream of future wages in research is now defined as:

ωR
gκ ≡

∫ ∞

κ
e−
∫ t′

κ (rτ+δg)dτwR
t′dt′.

Since this extension does not affect the choices of consumption and schooling, the
selection threshold on talent becomes:

zgκ ≡
(1 + τH

gκ)
η

1 − τL
gκ

× ωL
κ

ωR
gκ

.

On a balanced growth path, where the rental rate of capital is constant, we can rewrite:

zgt ≡
(1 + τH

f g)
η

1 − τL
f g

× wL
t
∗

wR
t
∗ ×

r + δg − gc

r − gc
.

Therefore, a larger rate of human capital depreciation raises the talent threshold above
which it becomes worthwhile to pursue innovation. This threshold implies that average
research productivity among gender g and cohort t is proportional to:

E[zi × hi|zi ≥ zgt] ∝
r + δg − gc

1 − τL
g

.

That is, if women inventors faced higher barriers to maintaining/updating their knowl-
edge and skills on-the-job, they would tend to be more productive than their male
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colleagues at the onset of their career, above and beyond what would be implied by the
labor market distortion alone.

Inventive Talent Uncertainty and Gendered Risk Aversion

Suppose that expected lifetime utility took the form:

Ui = E

∫ ∞

κ
e−(ρ+d)(t−κ)ug(cit)dt − βsieψg(t−κ) where ug(c) =

c1−γg − 1
1 − γg

and where γg > 1 denotes the coefficient of relative risk aversion of gender group
g, and ψg should be assumed to be chosen such that schooling time is stationary on
a balanced growth path. Suppose further that inventive talent xi is the product of a
heterogeneous observable signal zi and an unobserved shock ziu which is only realized
after the occupation choice:

xi = zi × ziu

where the talent shock is drawn from a univariate Pareto distribution with a cumulative
distribution function denoted by Gu:

Gu(zu) = 1 −
(

ϑu

zu

)θu

where ϑu ≡ θu − 1
θu

.

In this case, the current-value Hamiltonian of the individual’s problem is:

Ht =

ug(cit) + λt[rtait + (1 − τL
gt)w

R
t xihi − cit] if i ∈ R,

ug(cit) + λt(rtait + wL
t hi − cit) if i ∈ L,

where λt denotes the costate variable and limt→∞ e−(ρ+d)(t−κ)λtait = 0. The optimality
conditions are:

∂Ht

∂cit
= c−γg

it − λt = 0 and
∂Ht

∂ait
= λtrt = (ρ + d)λt − λ̇t.

Combining those equations, we obtain the Euler equation and the No-Ponzi condition:

ċit

cit
= (rt − ρ − d)/γg and lim

t→∞
e−
∫ t

κ rt′dt′ait = 0.
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Integrating the flow budget constraint using both equations delivers:

cit =

[ait + (1 − τL
gt)ω

R
t xihi]/∆gt if i ∈ R,

(ait + ωL
t hi)/∆gt if i ∈ L,

where we have the following two definitions:

ωo
t ≡

∫ ∞

t
e−
∫ t′

t rτdτwo
t′dt′ and ∆gt ≡

∫ ∞

t
e−
∫ t′

t [(γg−1)rτ+ρ+d]dτ/γgdt′

for o ∈ {R, L}. Using the individual’s Euler equation and the flow budget constraint’s
initial condition, we can express consumption in period t from the point of view of
period κ as:

cit =

(1 − τL
gκ)ω

R
κ xihie

∫ t
κ (rτ−ρ−d)dτ/γg /∆gκ if i ∈ R,

ωL
κ hie

∫ t
κ (rτ−ρ−d)dτ/γg /∆gκ if i ∈ L.

In terms of timing, let us assume that individuals first choose which career path they
want to pursue, after which the talent shock is realized and becomes actionable informa-
tion to guide consumption and education decisions. Therefore, substituting the above
equation in the definition of lifetime utility delivers:

Ui =


[(1−τL

gκ)ω
R
κ xihi]

1−γg ∆
γg
gκ −1

1−γg
− (1 + τH

gκ)βsieψg(t−κ) if i ∈ R,
(ωL

κ hi)
1−γg ∆

γg
gκ −1

1−γg
− βsieψg(t−κ) if i ∈ L.

Choosing schooling time to maximize lifetime utility:

si =


{

η[(1−τL
gκ)ω

R
κ xi]

1−γg ∆
γg
gκ

(1+τH
gκ)βeψg(t−κ)

} 1
1+η(γg−1)

if i ∈ R,{
ηωL

κ
1−γg ∆

γg
gκ

βeψg(t−κ)

} 1
1+η(γg−1)

if i ∈ L.

Substituting this choice back into the definition of expected lifetime utility:

Ui =


[1+η(γg−1)]E

{
[(ηηω̂R

gκziziue−ηψg(t−κ)/βη)1−γg ∆
γg
gκ ]

1
1+η(γg−1)

}
−1

1−γg
if i ∈ R,

[1+η(γg−1)][(ηηωL
κ e−ηψg(t−κ)/βη)1−γg ∆

γg
gκ ]

1
1+η(γg−1)−1

1−γg
if i ∈ L,
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where ω̂gκ is defined as usual. Individual i will decide to pursue research if and only if
their talent signal is above the threshold:

zgκ ≡ ωL
κ

ω̂R
gκ

× θu

θu − 1
×
{

[1 + η(γg − 1)]θu

[1 + η(γg − 1)]θu + γg − 1

} 1+η(γg−1)
γg−1

.

The additional last term reflects how talent uncertainty influences the occupation choice
and is decreasing in θu, but increasing in γg and η. Intuitively, a larger degree of talent
uncertainty and risk aversion, as captured by a low value of θu and a high value of γg,
discourages those who receive relatively low talent signals and for whom taking the risk
of drawing yet another low talent shock is simply not worth it.

The role of η is slightly more subtle. As mentioned earlier, the timing of decisions
is such that talent uncertainty is resolved after the occupation choice, but before the
schooling choice. With human capital and talent being complements, schooling decisions
amplify the degree of productivity dispersion ex-post and, therefore, the degree of
earnings uncertainty ex-ante. Consequently, the easier it is to turn schooling into
productive human capital, as measured by a larger value for η, the riskier the inventor
occupation seems. To illustrate these points, notice that in a risk-neutral world without
human capital (γg and η equal to zero), this talent uncertainty term would simply be
equal to one.

Now, consider the people from cohort κ and gender g whose talent signal exceeds the
selection threshold zgκ. Denoting by ĝ the corresponding probability density function of
talent signals, the distribution of total inventive talent x for this group must satisfy:

P(xi = x|zi ≥ zgκ) =
∫ ∞

−∞
ĝ(x/zu)gu(zu)|zu|−1dzu.

Denote that probability density function by g(x). Since the respective supports of ĝ and
gu are (zgκ,+∞) and (ϑu,+∞), the integrand in the above expression is nonzero if and
only if ϑu < zu < x/zgκ. With the definitions of ĝ and gu, this implies:

g(x) =


θ2
(

ϑuzgκ

x

)θ
ln
(

x
ϑuzgκ

)
/x if θu = θ,(

θuθ
θu−θ

) [(
ϑuzgκ

x

)θ
−
(

ϑuzgκ

x

)θu
]

/x otherwise

with support x > ϑu × zgκ. To have a sense of what this distribution looks like, Figure 12
plots its probability density function for θ = 2 and different values of θu. The right tail of
that distribution still follows a power law with tail exponent min{θ, θu}, but its left tail
is hump-shaped, in contrast to the initial Pareto distributions. This hump-shape pattern
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is a consequence of the “fuzzy” selection into inventorship, as individuals with talent
signals above the selection threshold may ultimately receive deceptively low talent
shocks.

Figure 12: The Distribution of Inventive Talent with Uncertainty
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Note: This figure plots g(x) for different values of θu when θ = 2.
For lower values of θu, there is more dispersion in talent shocks,
which delivers a thicker right tail of inventive talent.

Taking the product of talent and human capital and integrating over the resulting
distribution delivers an expression for average research productivity among gender g
and cohort κ:

E[xi × hi|zi ≥ zgκ] ∝
1

1 − τL
gκ

×
{

[1 + η(γg − 1)]θu

[1 + η(γg − 1)]θu + γg − 1

} 1
γg−1

.

Note that average research productivity is still inversely proportional to the “keep rate”
of the labor market tax but is also an increasing function of γg. Therefore, if larger
relative risk aversion is what was keeping women away from innovation, we would
expect women inventors to be, once again, more productive than their male colleagues,
above and beyond what would be implied by the labor market tax alone.
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